Suppr超能文献

特征推理与类别的因果结构。

Feature inference and the causal structure of categories.

作者信息

Rehder Bob, Burnett Russell C

机构信息

Department of Psychology, New York University, USA.

出版信息

Cogn Psychol. 2005 May;50(3):264-314. doi: 10.1016/j.cogpsych.2004.09.002. Epub 2004 Dec 15.

Abstract

The purpose of this article was to establish how theoretical category knowledge-specifically, knowledge of the causal relations that link the features of categories-supports the ability to infer the presence of unobserved features. Our experiments were designed to test proposals that causal knowledge is represented psychologically as Bayesian networks. In five experiments we found that Bayes' nets generally predicted participants' feature inferences quite well. However, we also observed a pervasive violation of one of the defining principles of Bayes' nets-the causal Markov condition-because the presence of characteristic features invariably led participants to infer yet another characteristic feature. We argue that this effect arises from a domain-general bias to assume the presence of underlying mechanisms associated with the category. Specifically, people take an exemplar to be a "well functioning" category member when it has most or all of the category's characteristic features, and thus are likely to infer a characteristic value on an unobserved dimension.

摘要

本文的目的是确定理论类别知识——具体而言,即连接类别特征的因果关系的知识——如何支持推断未观察到的特征存在的能力。我们的实验旨在检验因果知识在心理上被表征为贝叶斯网络的提议。在五个实验中,我们发现贝叶斯网络通常能很好地预测参与者的特征推断。然而,我们也观察到对贝叶斯网络的一个定义性原则——因果马尔可夫条件——的普遍违反,因为特征的存在总是导致参与者推断出另一个特征。我们认为这种效应源于一种领域通用的偏差,即假设存在与该类别相关的潜在机制。具体来说,当一个范例具有该类别的大部分或所有特征时,人们会认为它是一个“功能良好”的类别成员,因此很可能在一个未观察到的维度上推断出一个特征值。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验