Suppr超能文献

使用权重来处理无应答和失访情况。

The use of weights to account for non-response and drop-out.

作者信息

Höfler Michael, Pfister Hildegard, Lieb Roselind, Wittchen Hans-Ulrich

机构信息

Max-Planck-Institut of Psychiatry, Clinical Psychology and Epidemiology, Kraepelinstr. 2-10, 80804, München, Germany.

出版信息

Soc Psychiatry Psychiatr Epidemiol. 2005 Apr;40(4):291-9. doi: 10.1007/s00127-005-0882-5.

Abstract

BACKGROUND

Empirical studies in psychiatric research and other fields often show substantially high refusal and drop-out rates. Non-participation and drop-out may introduce a bias whose magnitude depends on how strongly its determinants are related to the respective parameter of interest.

METHODS

When most information is missing, the standard approach is to estimate each respondent's probability of participating and assign each respondent a weight that is inversely proportional to this probability. This paper contains a review of the major ideas and principles regarding the computation of statistical weights and the analysis of weighted data.

RESULTS

A short software review for weighted data is provided and the use of statistical weights is illustrated through data from the EDSP (Early Developmental Stages of Psychopathology) Study. The results show that disregarding different sampling and response probabilities can have a major impact on estimated odds ratios.

CONCLUSIONS

The benefit of using statistical weights in reducing sampling bias should be balanced against increased variances in the weighted parameter estimates.

摘要

背景

精神病学研究及其他领域的实证研究常常显示出极高的拒绝率和退出率。不参与和退出可能会引入一种偏差,其大小取决于决定因素与各自感兴趣参数的相关程度。

方法

当大部分信息缺失时,标准方法是估计每个受访者的参与概率,并为每个受访者分配一个与其概率成反比的权重。本文对有关统计权重计算和加权数据分析的主要思想和原则进行了综述。

结果

提供了一个针对加权数据的简短软件综述,并通过精神病理学早期发展阶段(EDSP)研究的数据说明了统计权重的使用。结果表明,忽略不同的抽样和应答概率可能会对估计的优势比产生重大影响。

结论

在减少抽样偏差方面使用统计权重的益处应与加权参数估计中增加的方差相权衡。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验