Suppr超能文献

带有不可忽略缺失响应数据的加权估计方程。

Weighted estimating equations with nonignorably missing response data.

作者信息

Troxel A B, Lipsitz S R, Brennan T A

机构信息

Southwest Oncology Group Statistical Center, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109-4417, USA.

出版信息

Biometrics. 1997 Sep;53(3):857-69.

PMID:9290219
Abstract

We propose weighted estimating equations for data with nonignorable nonresponse in order to reduce the bias that can occur with a complete case analysis. A survey concerning medical practice guidelines, malpractice litigation, and settlement provides the framework. The survey was sent to recipients in two waves: those who responded on the first or second wave are used to estimate a nonignorable nonresponse model, while the fraction of recipients who never responded is used to allow the percentage of missing data to change with each wave. We use the structure of the GEE of Liang and Zeger (1986, Biometrika 73, 13-22), adding weights equal to the inverse probability of being observed. We present simulations demonstrating the bias that can occur with an unweighted analysis and use the survey data to illustrate the methods.

摘要

我们提出了用于处理具有不可忽略的无应答数据的加权估计方程,以减少完全病例分析中可能出现的偏差。一项关于医学实践指南、医疗事故诉讼和和解的调查提供了框架。该调查分两波发送给收件人:在第一波或第二波回复的人用于估计不可忽略的无应答模型,而从未回复的收件人比例用于允许缺失数据的百分比随每一波变化。我们利用Liang和Zeger(1986年,《生物统计学》73卷,第13 - 22页)的广义估计方程(GEE)结构,添加等于被观测到的逆概率的权重。我们给出了模拟结果,展示了未加权分析中可能出现的偏差,并使用调查数据来说明这些方法。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验