Suppr超能文献

使用具有不同半衰期的重组酶在不同时间尺度上测量染色体动态变化。

Measuring chromosome dynamics on different time scales using resolvases with varying half-lives.

作者信息

Stein Richard A, Deng Shuang, Higgins N Patrick

机构信息

Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, AL 35294, USA.

出版信息

Mol Microbiol. 2005 May;56(4):1049-61. doi: 10.1111/j.1365-2958.2005.04588.x.

Abstract

The bacterial chromosome is organized into multiple independent domains, each capable of constraining the plectonemic negative supercoil energy introduced by DNA gyrase. Different experimental approaches have estimated the number of domains to be between 40 and 150. The site-specific resolution systems of closely related transposons Tn3 and gammadelta are valuable tools for measuring supercoil diffusion and analysing bacterial chromosome dynamics in vivo. Once made, the wild-type resolvase persists in cells for time periods greater than the cell doubling time. To examine chromosome dynamics over shorter time frames that are more closely tuned to processes like inducible transcription, we constructed a set of resolvases with cellular half-lives ranging from less than 5 min to 30 min. Analysing chromosomes on different time scales shows domain structure to be dynamic. Rather than the 150 domains detected with the Tn3 resolvase, wild-type cells measured over a 10 min time span have more than 400 domains per genome equivalent, and some gyrase mutants exceed 1000.

摘要

细菌染色体被组织成多个独立的结构域,每个结构域都能够限制由DNA促旋酶引入的麻花状负超螺旋能量。不同的实验方法估计结构域的数量在40到150之间。密切相关的转座子Tn3和γδ的位点特异性切割系统是测量超螺旋扩散和分析体内细菌染色体动力学的有价值工具。一旦产生,野生型切割酶在细胞中持续存在的时间超过细胞倍增时间。为了在更紧密地适应诱导型转录等过程的更短时间框架内检查染色体动力学,我们构建了一组细胞半衰期从不到5分钟到30分钟不等的切割酶。在不同时间尺度上分析染色体表明,结构域结构是动态的。与用Tn3切割酶检测到的150个结构域不同,在10分钟时间跨度内测量的野生型细胞每基因组当量有超过400个结构域,一些促旋酶突变体超过1000个。

相似文献

1
Measuring chromosome dynamics on different time scales using resolvases with varying half-lives.
Mol Microbiol. 2005 May;56(4):1049-61. doi: 10.1111/j.1365-2958.2005.04588.x.
2
Rates of gyrase supercoiling and transcription elongation control supercoil density in a bacterial chromosome.
PLoS Genet. 2012;8(8):e1002845. doi: 10.1371/journal.pgen.1002845. Epub 2012 Aug 16.
3
Transcription-induced barriers to supercoil diffusion in the Salmonella typhimurium chromosome.
Proc Natl Acad Sci U S A. 2004 Mar 9;101(10):3398-403. doi: 10.1073/pnas.0307550101. Epub 2004 Mar 1.
4
Measuring In Vivo Supercoil Dynamics and Transcription Elongation Rates in Bacterial Chromosomes.
Methods Mol Biol. 2017;1624:17-27. doi: 10.1007/978-1-4939-7098-8_2.
5
Gyrase and Topo IV modulate chromosome domain size in vivo.
Mol Microbiol. 1998 Sep;29(6):1435-48. doi: 10.1046/j.1365-2958.1998.01025.x.
6
DNA topology of highly transcribed operons in Salmonella enterica serovar Typhimurium.
Mol Microbiol. 2010 Dec;78(6):1348-64. doi: 10.1111/j.1365-2958.2010.07394.x. Epub 2010 Sep 30.
7
Catalysis of site-specific recombination by Tn3 resolvase.
Biochem Soc Trans. 2010 Apr;38(2):417-21. doi: 10.1042/BST0380417.
8
Structural basis for topological regulation of Tn3 resolvase.
Nucleic Acids Res. 2023 Feb 22;51(3):1001-1018. doi: 10.1093/nar/gkac733.

引用本文的文献

1
Bacterial nucleoid is a riddle wrapped in a mystery inside an enigma.
J Bacteriol. 2024 Mar 21;206(3):e0021123. doi: 10.1128/jb.00211-23. Epub 2024 Feb 15.
2
Catastrophic chromosome fragmentation probes the nucleoid structure and dynamics in Escherichia coli.
Nucleic Acids Res. 2022 Oct 28;50(19):11013-11027. doi: 10.1093/nar/gkac865.
4
Extended sister-chromosome catenation leads to massive reorganization of the E. coli genome.
Nucleic Acids Res. 2022 Mar 21;50(5):2635-2650. doi: 10.1093/nar/gkac105.
6
Supercoil Levels in and Chromosomes Are Regulated by the C-Terminal 35⁻38 Amino Acids of GyrA.
Microorganisms. 2019 Mar 15;7(3):81. doi: 10.3390/microorganisms7030081.
7
Enteropathogens: Tuning Their Gene Expression for Hassle-Free Survival.
Front Microbiol. 2019 Jan 9;9:3303. doi: 10.3389/fmicb.2018.03303. eCollection 2018.
8
Species-specific supercoil dynamics of the bacterial nucleoid.
Biophys Rev. 2016 Nov;8(Suppl 1):113-121. doi: 10.1007/s12551-016-0207-9. Epub 2016 Jul 20.
9
Large-Scale Conformational Transitions in Supercoiled DNA Revealed by Coarse-Grained Simulation.
Biophys J. 2016 Oct 4;111(7):1339-1349. doi: 10.1016/j.bpj.2016.07.045.
10
Organization of DNA in a bacterial nucleoid.
BMC Microbiol. 2016 Feb 20;16:22. doi: 10.1186/s12866-016-0637-3.

本文引用的文献

1
Macrodomain organization of the Escherichia coli chromosome.
EMBO J. 2004 Oct 27;23(21):4330-41. doi: 10.1038/sj.emboj.7600434. Epub 2004 Oct 7.
2
Multiple pathways process stalled replication forks.
Proc Natl Acad Sci U S A. 2004 Aug 31;101(35):12783-8. doi: 10.1073/pnas.0401586101. Epub 2004 Aug 24.
3
Topological domain structure of the Escherichia coli chromosome.
Genes Dev. 2004 Jul 15;18(14):1766-79. doi: 10.1101/gad.1207504.
4
Linear ordering and dynamic segregation of the bacterial chromosome.
Proc Natl Acad Sci U S A. 2004 Jun 22;101(25):9175-6. doi: 10.1073/pnas.0403722101. Epub 2004 Jun 15.
5
Rapid and sequential movement of individual chromosomal loci to specific subcellular locations during bacterial DNA replication.
Proc Natl Acad Sci U S A. 2004 Jun 22;101(25):9257-62. doi: 10.1073/pnas.0402606101. Epub 2004 Jun 3.
6
The bacterial condensin MukBEF compacts DNA into a repetitive, stable structure.
Science. 2004 Jul 9;305(5681):222-7. doi: 10.1126/science.1098225. Epub 2004 Jun 3.
8
Communication between ClpX and ClpP during substrate processing and degradation.
Nat Struct Mol Biol. 2004 May;11(5):404-11. doi: 10.1038/nsmb752. Epub 2004 Apr 4.
9
Transcription-induced barriers to supercoil diffusion in the Salmonella typhimurium chromosome.
Proc Natl Acad Sci U S A. 2004 Mar 9;101(10):3398-403. doi: 10.1073/pnas.0307550101. Epub 2004 Mar 1.
10
Kinetics of plasmid segregation in Escherichia coli.
Mol Microbiol. 2004 Jan;51(2):461-9. doi: 10.1046/j.1365-2958.2003.03837.x.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验