Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, Alabama, United States of America.
PLoS Genet. 2012;8(8):e1002845. doi: 10.1371/journal.pgen.1002845. Epub 2012 Aug 16.
Gyrase catalyzes negative supercoiling of DNA in an ATP-dependent reaction that helps condense bacterial chromosomes into a compact interwound "nucleoid." The supercoil density (σ) of prokaryotic DNA occurs in two forms. Diffusible supercoil density (σ(D)) moves freely around the chromosome in 10 kb domains, and constrained supercoil density (σ(C)) results from binding abundant proteins that bend, loop, or unwind DNA at many sites. Diffusible and constrained supercoils contribute roughly equally to the total in vivo negative supercoil density of WT cells, so σ = σ(C)+σ(D). Unexpectedly, Escherichia coli chromosomes have a 15% higher level of σ compared to Salmonella enterica. To decipher critical mechanisms that can change diffusible supercoil density of chromosomes, we analyzed strains of Salmonella using a 9 kb "supercoil sensor" inserted at ten positions around the genome. The sensor contains a complete Lac operon flanked by directly repeated resolvase binding sites, and the sensor can monitor both supercoil density and transcription elongation rates in WT and mutant strains. RNA transcription caused (-) supercoiling to increase upstream and decrease downstream of highly expressed genes. Excess upstream supercoiling was relaxed by Topo I, and gyrase replenished downstream supercoil losses to maintain an equilibrium state. Strains with TS gyrase mutations growing at permissive temperature exhibited significant supercoil losses varying from 30% of WT levels to a total loss of σ(D) at most chromosome locations. Supercoil losses were influenced by transcription because addition of rifampicin (Rif) caused supercoil density to rebound throughout the chromosome. Gyrase mutants that caused dramatic supercoil losses also reduced the transcription elongation rates throughout the genome. The observed link between RNA polymerase elongation speed and gyrase turnover suggests that bacteria with fast growth rates may generate higher supercoil densities than slow growing species.
回旋酶在依赖 ATP 的反应中催化 DNA 的负超螺旋化,有助于将细菌染色体浓缩成紧密缠绕的“核质”。原核 DNA 的超螺旋密度(σ)以两种形式存在。扩散超螺旋密度(σ(D))在 10 kb 结构域内自由移动,约束超螺旋密度(σ(C))来自于大量与 DNA 结合的蛋白质,这些蛋白质在许多位点弯曲、环化或解开 DNA。扩散超螺旋和约束超螺旋对 WT 细胞体内负超螺旋密度的总贡献大致相等,因此 σ=σ(C)+σ(D)。出乎意料的是,与沙门氏菌相比,大肠杆菌染色体的σ水平高出 15%。为了解析可能改变染色体扩散超螺旋密度的关键机制,我们分析了沙门氏菌的菌株,这些菌株在基因组的十个位置插入了一个 9 kb 的“超螺旋传感器”。该传感器包含一个完整的 Lac 操纵子,两侧是直接重复的核酸内切酶结合位点,传感器可以监测 WT 和突变菌株中的超螺旋密度和转录延伸率。RNA 转录导致(-)超螺旋在高度表达基因的上游增加而下游减少。拓扑异构酶 I 松弛了过多的上游超螺旋,而回旋酶则补充下游超螺旋损失以维持平衡状态。在允许温度下生长的 TS 回旋酶突变菌株表现出显著的超螺旋损失,从 WT 水平的 30%到大多数染色体位置的σ(D)完全丧失。转录对超螺旋损失有影响,因为加入利福平(Rif)会导致整个染色体的超螺旋密度反弹。引起明显超螺旋损失的回旋酶突变体也降低了整个基因组的转录延伸率。RNA 聚合酶延伸速度与回旋酶周转率之间的观察到的联系表明,生长速度较快的细菌可能会产生比生长速度较慢的物种更高的超螺旋密度。