Department of Biochemistry and Molecular Genetics, University of Alabama , Birmingham, AL 35294-0024, USA.
Mol Microbiol. 2010 Dec;78(6):1348-64. doi: 10.1111/j.1365-2958.2010.07394.x. Epub 2010 Sep 30.
Bacteria differ from eukaryotes by having the enzyme DNA gyrase, which catalyses the ATP-dependent negative supercoiling of DNA. Negative supercoils are essential for condensing chromosomes into an interwound (plectonemic) and branched structure known as the nucleoid. Topo-1 removes excess supercoiling in an ATP-independent reaction and works with gyrase to establish a topological equilibrium where supercoils move within 10 kb domains bounded by stochastic barriers along the sequence. However, transcription changes the stochastic pattern by generating supercoil diffusion barriers near the sites of gene expression. Using supercoil-dependent Tn3 and γδ resolution assays, we studied DNA topology upstream, downstream and across highly transcribed operons. Whenever two Res sites flanked efficiently transcribed genes, resolution was inhibited and the loss in recombination efficiency was proportional to transcription level. Ribosomal RNA operons have the highest transcription rates, and resolution assays at the rrnG and rrnH operons showed inhibitory levels 40-100 times those measured in low-transcription zones. Yet, immediately upstream and downstream of RNA polymerase (RNAP) initiation and termination sites, supercoiling characteristics were similar to poorly transcribed zones. We present a model that explains why RNAP blocks plectonemic supercoil movement in the transcribed track and suggests how gyrase and TopA control upstream and downstream transcription-driven supercoiling.
细菌与真核生物的不同之处在于其具有酶 DNA 拓扑异构酶 II,该酶可催化 DNA 的 ATP 依赖性负超螺旋化。负超螺旋对于将染色体浓缩成缠绕(盘旋)和分支结构(称为拟核)至关重要。拓扑异构酶 1 通过非 ATP 依赖性反应消除多余的超螺旋,并与拓扑异构酶 II 一起建立拓扑平衡,其中超螺旋在由序列上的随机障碍限定的 10 kb 范围内的域内移动。然而,转录通过在基因表达部位附近产生超螺旋扩散障碍来改变随机模式。使用超螺旋依赖性 Tn3 和 γδ 分辨率测定法,我们研究了高度转录操纵子上下游和跨区的 DNA 拓扑结构。每当两个 Res 位点有效地围绕转录基因时,分辨率就会受到抑制,并且重组效率的损失与转录水平成正比。核糖体 RNA 操纵子具有最高的转录率,在 rrnG 和 rrnH 操纵子上进行的分辨率测定显示,抑制水平是在低转录区测量值的 40-100 倍。然而,在 RNA 聚合酶(RNAP)起始和终止位点的上下游,超螺旋特征与转录活性低的区域相似。我们提出了一个模型,该模型解释了为什么 RNAP 会阻止转录区内的盘旋超螺旋运动,并提出了拓扑异构酶 II 和 TopA 如何控制转录驱动的上下游超螺旋。