Suppr超能文献

纵向微管-动力蛋白相互作用和基于牵拉的微管组织中心定位。

End-on microtubule-dynein interactions and pulling-based positioning of microtubule organizing centers.

机构信息

Faculty of Arts and Sciences, Center for Systems Biology, Harvard University, Cambridge, MA, USA.

出版信息

Cell Cycle. 2012 Oct 15;11(20):3750-7. doi: 10.4161/cc.21753. Epub 2012 Aug 16.

Abstract

During important cellular processes such as centrosome and spindle positioning, dynein at the cortex interacts with dynamic microtubules in an apparent "end-on" fashion. It is well-established that dynein can generate forces by moving laterally along the microtubule lattice, but much less is known about dynein's interaction with dynamic microtubule ends. In this paper, we review recent in vitro experiments that show that dynein, attached to an artificial cortex, is able to capture microtubule ends, regulate microtubule dynamics and mediate the generation of pulling forces on shrinking microtubules. We further review existing ideas on the involvement of dynein-mediated cortical pulling forces in the positioning of microtubule organizing centers such as centrosomes. Recent in vitro experiments have demonstrated that cortical pulling forces in combination with pushing forces can lead to reliable centering of microtubule asters in quasi two-dimensional microfabricated chambers. In these experiments, pushing leads to slipping of microtubule ends along the chamber boundaries, resulting in an anisotropic distribution of cortical microtubule contacts that favors centering, once pulling force generators become engaged. This effect is predicted to be strongly geometry-dependent, and we therefore finally discuss ongoing efforts to repeat these experiments in three-dimensional, spherical and deformable geometries.

摘要

在中心体和纺锤体定位等重要细胞过程中,皮层中的动力蛋白以明显的“端到端”方式与动态微管相互作用。动力蛋白可以通过沿微管晶格侧向移动来产生力,这一点已经得到充分证实,但关于动力蛋白与动态微管末端的相互作用知之甚少。在本文中,我们回顾了最近的体外实验,这些实验表明,附着在人工皮层上的动力蛋白能够捕获微管末端,调节微管动力学,并介导对收缩微管的拉力的产生。我们进一步回顾了关于动力蛋白介导的皮层拉力在微管组织中心(如中心体)定位中的作用的现有观点。最近的体外实验表明,皮层拉力与推力相结合可以导致微管星状体在准二维微加工腔室内可靠地居中。在这些实验中,推动导致微管末端沿着腔室边界滑动,从而导致皮层微管接触的各向异性分布,有利于居中,一旦拉力发生器开始工作。这种效应预计强烈依赖于几何形状,因此我们最后讨论了在三维、球形和可变形几何形状中重复这些实验的进展。

相似文献

1
End-on microtubule-dynein interactions and pulling-based positioning of microtubule organizing centers.
Cell Cycle. 2012 Oct 15;11(20):3750-7. doi: 10.4161/cc.21753. Epub 2012 Aug 16.
4
Enucleation of the embryo revealed dynein-dependent spacing between microtubule asters.
Life Sci Alliance. 2023 Nov 6;7(1). doi: 10.26508/lsa.202302427. Print 2024 Jan.
5
Effects of dynein on microtubule mechanics and centrosome positioning.
Mol Biol Cell. 2011 Dec;22(24):4834-41. doi: 10.1091/mbc.E11-07-0611. Epub 2011 Oct 19.
7
Finding the cell center by a balance of dynein and myosin pulling and microtubule pushing: a computational study.
Mol Biol Cell. 2010 Dec;21(24):4418-27. doi: 10.1091/mbc.E10-07-0627. Epub 2010 Oct 27.
8
Modeling microtubule-mediated forces and centrosome positioning in Caenorhabditis elegans embryos.
Methods Cell Biol. 2010;97:437-53. doi: 10.1016/S0091-679X(10)97023-4.
9
Dynactin binding to tyrosinated microtubules promotes centrosome centration in C. elegans by enhancing dynein-mediated organelle transport.
PLoS Genet. 2017 Jul 31;13(7):e1006941. doi: 10.1371/journal.pgen.1006941. eCollection 2017 Jul.

引用本文的文献

1
Asynchronous mouse embryo polarization leads to heterogeneity in cell fate specification.
bioRxiv. 2025 Jun 23:2024.07.26.605266. doi: 10.1101/2024.07.26.605266.
2
The GTP-tubulin cap is not the determinant of microtubule end stability in cells.
Mol Biol Cell. 2024 Oct 1;35(10):br19. doi: 10.1091/mbc.E24-07-0307. Epub 2024 Sep 11.
3
Positioning centrioles and centrosomes.
J Cell Biol. 2024 Apr 1;223(4). doi: 10.1083/jcb.202311140. Epub 2024 Mar 21.
4
Dynein localization and pronuclear movement in the C. elegans zygote.
Cytoskeleton (Hoboken). 2022 Dec;79(12):133-143. doi: 10.1002/cm.21733. Epub 2022 Oct 28.
6
Modeling reveals cortical dynein-dependent fluctuations in bipolar spindle length.
Biophys J. 2021 Aug 3;120(15):3192-3210. doi: 10.1016/j.bpj.2021.05.030. Epub 2021 Jun 29.
7
The coordination of spindle-positioning forces during the asymmetric division of the Caenorhabditis elegans zygote.
EMBO Rep. 2021 May 5;22(5):e50770. doi: 10.15252/embr.202050770. Epub 2021 Apr 26.
8
Microtubule-dependent pushing forces contribute to long-distance aster movement and centration in egg extracts.
Mol Biol Cell. 2020 Dec 1;31(25):2791-2802. doi: 10.1091/mbc.E20-01-0088. Epub 2020 Oct 7.
9
Mechanics of Multicentrosomal Clustering in Bipolar Mitotic Spindles.
Biophys J. 2020 Jul 21;119(2):434-447. doi: 10.1016/j.bpj.2020.06.004. Epub 2020 Jun 12.

本文引用的文献

2
Cell cycle-regulated cortical dynein/dynactin promotes symmetric cell division by differential pole motion in anaphase.
Mol Biol Cell. 2012 Sep;23(17):3380-90. doi: 10.1091/mbc.E12-02-0109. Epub 2012 Jul 18.
3
Nuclear positioning: dynein needed for microtubule shrinkage-coupled movement.
Curr Biol. 2012 Jun 19;22(12):R496-9. doi: 10.1016/j.cub.2012.04.044.
4
Mechanism for astral microtubule capture by cortical Bud6p priming spindle polarity in S. cerevisiae.
Curr Biol. 2012 Jun 19;22(12):1075-83. doi: 10.1016/j.cub.2012.04.059. Epub 2012 May 17.
5
Dynein tethers and stabilizes dynamic microtubule plus ends.
Curr Biol. 2012 Apr 10;22(7):632-7. doi: 10.1016/j.cub.2012.02.023. Epub 2012 Mar 22.
7
Effects of dynein on microtubule mechanics and centrosome positioning.
Mol Biol Cell. 2011 Dec;22(24):4834-41. doi: 10.1091/mbc.E11-07-0611. Epub 2011 Oct 19.
8
Encapsulation of active cytoskeletal protein networks in cell-sized liposomes.
Langmuir. 2011 Aug 16;27(16):10061-71. doi: 10.1021/la201604z. Epub 2011 Jul 12.
9
A polarised population of dynamic microtubules mediates homeostatic length control in animal cells.
PLoS Biol. 2010 Nov 16;8(11):e1000542. doi: 10.1371/journal.pbio.1000542.
10
Caenorhabditis elegans EFA-6 limits microtubule growth at the cell cortex.
Nat Cell Biol. 2010 Dec;12(12):1235-41. doi: 10.1038/ncb2128. Epub 2010 Nov 14.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验