Das Pritha, Kemp Andrew H, Liddell Belinda J, Brown Kerri J, Olivieri Gloria, Peduto Anthony, Gordon Evian, Williams Leanne M
Neuroscience Institute of Schizophrenia and Allied Disorders (NISAD), Darlinghurst, NSW, Australia.
Neuroimage. 2005 May 15;26(1):141-8. doi: 10.1016/j.neuroimage.2005.01.049.
Effective perception of fear signals is crucial for human survival and the importance of the amygdala in this process is well documented. Animal, lesion and neuroimaging studies indicate that incoming sensory signals of fear travel from thalamus to amygdala via two neural pathways: a direct subcortical route and an indirect pathway via the sensory cortex. Other lines of research have demonstrated prefrontal modulation of the amygdala. However, no study to date has examined the prefrontal modulation of the thalamo-cortico-amygdala pathways in vivo. We used psychophysiological and physiophysiological interactions to examine the functional connectivity within thalamus, amygdala and sensory (inferior occipital, fusiform) cortices, and the modulation of these networks by the anterior cingulate cortex (ACC). Functional magnetic resonance imaging (fMRI) data were acquired for 28 healthy control subjects during a fear perception task, with neutral as the 'baseline' control condition. Main effect analysis, using a region of interest (ROI) approach, confirmed that these regions are part of a distributed neural system for fear perception. Psychophysiological interactions revealed an inverse functional connectivity between occipito-temporal visual regions and the left amygdala, but a positive connectivity between these visual region and the right amygdala, suggesting that there is a hemispheric specialization in the transfer of fear signals from sensory cortices to amygdala. Physiophysiological interactions revealed a dorsal-ventral division in ACC modulation of the thalamus-sensory cortex pathway. While the dorsal ACC showed a positive modulation of this pathway, the ventral ACC exhibited an inverse relationship. In addition, both the dorsal and ventral ACC showed an inverse interaction with the direct thalamus-amygdala pathway. These findings suggest that thalamo-amygdala and cortical regions are involved in a dynamic interplay, with functional differentiation in both lateralized and ventral/dorsal gradients. Breakdowns in these interactions may give rise to affect-related symptoms seen in a range of neuropsychiatric disorders.
对恐惧信号的有效感知对人类生存至关重要,杏仁核在此过程中的重要性已有充分记录。动物、损伤和神经影像学研究表明,传入的恐惧感觉信号通过两条神经通路从丘脑传导至杏仁核:一条直接的皮质下通路和一条经感觉皮质的间接通路。其他研究表明前额叶对杏仁核有调节作用。然而,迄今为止尚无研究在活体中检测前额叶对丘脑 - 皮质 - 杏仁核通路的调节。我们使用心理生理和生理生理交互作用来检测丘脑、杏仁核和感觉(枕下回、梭状回)皮质内的功能连接,以及前扣带回皮质(ACC)对这些网络的调节。在恐惧感知任务期间,对28名健康对照受试者进行了功能磁共振成像(fMRI)数据采集,以中性状态作为“基线”对照条件。使用感兴趣区域(ROI)方法进行的主效应分析证实,这些区域是恐惧感知分布式神经系统的一部分。心理生理交互作用揭示了枕颞视觉区域与左侧杏仁核之间的反向功能连接,但这些视觉区域与右侧杏仁核之间存在正向连接,这表明在恐惧信号从感觉皮质传递到杏仁核的过程中存在半球特化。生理生理交互作用揭示了ACC对丘脑 - 感觉皮质通路调节的背腹区分。虽然背侧ACC对该通路表现出正向调节,但腹侧ACC表现出反向关系。此外,背侧和腹侧ACC均与直接的丘脑 - 杏仁核通路表现出反向交互作用。这些发现表明,丘脑 - 杏仁核和皮质区域参与了动态相互作用,在左右侧化和腹侧/背侧梯度上均存在功能分化。这些相互作用的破坏可能会引发一系列神经精神疾病中出现的情感相关症状。