Barthélemy Marc, Barrat Alain, Pastor-Satorras Romualdo, Vespignani Alessandro
CEA-Centre d'Etudes de Bruyères-le-Châtel, Département de Physique Théorique et Appliquée BP12, 91680 Bruyères-Le-Châtel, France.
J Theor Biol. 2005 Jul 21;235(2):275-88. doi: 10.1016/j.jtbi.2005.01.011.
We present a thorough inspection of the dynamical behavior of epidemic phenomena in populations with complex and heterogeneous connectivity patterns. We show that the growth of the epidemic prevalence is virtually instantaneous in all networks characterized by diverging degree fluctuations, independently of the structure of the connectivity correlation functions characterizing the population network. By means of analytical and numerical results, we show that the outbreak time evolution follows a precise hierarchical dynamics. Once reached the most highly connected hubs, the infection pervades the network in a progressive cascade across smaller degree classes. Finally, we show the influence of the initial conditions and the relevance of statistical results in single case studies concerning heterogeneous networks. The emerging theoretical framework appears of general interest in view of the recently observed abundance of natural networks with complex topological features and might provide useful insights for the development of adaptive strategies aimed at epidemic containment.
我们对具有复杂和异质连接模式的人群中流行病现象的动力学行为进行了全面研究。我们表明,在所有以发散度波动为特征的网络中,流行病患病率的增长几乎是瞬间的,与表征人群网络的连接相关函数的结构无关。通过分析和数值结果,我们表明爆发时间演化遵循精确的层次动力学。一旦到达连接度最高的枢纽节点,感染就会以渐进的级联方式在较小度数类别的节点中蔓延,从而扩散到整个网络。最后,我们展示了初始条件的影响以及统计结果在关于异质网络的单案例研究中的相关性。鉴于最近观察到大量具有复杂拓扑特征的自然网络,新出现的理论框架似乎具有普遍意义,并且可能为制定旨在控制流行病的适应性策略提供有用的见解。