Stetten George, Cois Aaron, Chang Wilson, Shelton Damion, Tamburo Robert, Castellucci John, von Ramm Olaf
Department of Bioengineering, 749 Benedum Hall, University of Pittsburgh; Robotics Institute, Carnegie Mellon University, Pittsburgh, PA, USA.
Acad Radiol. 2005 May;12(5):535-43. doi: 10.1016/j.acra.2004.06.011.
Real-time tomographic reflection (RTTR) permits in situ visualization of tomographic images so that natural hand-eye coordination can be used directly during invasive procedures. The method uses a half-silvered mirror to merge the visual outer surface of the patient with a simultaneous scan of the patient's interior without requiring a head-mounted display or tracking. A viewpoint-independent virtual image is reflected precisely into its actual location. When applied to ultrasound, we call the resulting RTTR device the sonic flashlight. We previously implemented the sonic flashlight using conventional two-dimensional ultrasound scanners that produce B-mode slices. Real-time three-dimensional (RT3D) ultrasound scanners recently have been developed that permit RTTR to be applied to slices with other orientations, including C-mode (parallel to the face of the transducer). Such slice orientation may offer advantages for image-guided intervention.
Using a prototype scanner developed at Duke University (Durham, NC) with a matrix array that electronically steers an ultrasound beam at high speed in 3D, we implemented a sonic flashlight capable of displaying C-mode images in situ in real time.
We present the first images from the C-mode sonic flashlight, showing bones in the hand and the cardiac ventricles.
The extension of RTTR to matrix array RT3D ultrasound offers the ability to visualize in situ slices other than the conventional B-mode slice, including C-mode slices parallel to the face of the transducer. This orientation may provide a broader target, facilitating certain interventional procedures. Future work is discussed, including display of slices with arbitrary orientation and use of a holographic optical element instead of a mirror.
实时断层反射(RTTR)可对断层图像进行原位可视化,以便在侵入性操作过程中直接利用自然的手眼协调能力。该方法使用半镀银镜将患者的可视外表面与对患者内部的同步扫描合并,无需头戴式显示器或跟踪设备。一个与视角无关的虚拟图像被精确反射到其实际位置。当应用于超声时,我们将由此产生的RTTR设备称为声波手电筒。我们之前使用产生B模式切片的传统二维超声扫描仪实现了声波手电筒。最近开发的实时三维(RT3D)超声扫描仪使RTTR能够应用于其他方向的切片,包括C模式(平行于换能器表面)。这种切片方向可能为图像引导介入提供优势。
我们使用杜克大学(北卡罗来纳州达勒姆)开发的具有矩阵阵列的原型扫描仪,该矩阵阵列能在三维空间中高速电子操纵超声束,实现了一种能够实时原位显示C模式图像的声波手电筒。
我们展示了来自C模式声波手电筒的首批图像,显示了手部骨骼和心室。
将RTTR扩展到矩阵阵列RT3D超声能够可视化除传统B模式切片之外的原位切片,包括平行于换能器表面的C模式切片。这种方向可能提供更广阔的目标,便于某些介入操作。讨论了未来的工作,包括显示任意方向的切片以及使用全息光学元件代替镜子。