Nock Richard, Nielsen Frank
Université Antilles-Guyane, Département Scientifique Inter-facultaire/GRIMAAG Lab., B.P. 7209, 97278 Schoelcher, Martinique, France.
IEEE Trans Pattern Anal Mach Intell. 2004 Nov;26(11):1452-8. doi: 10.1109/TPAMI.2004.110.
This paper explores a statistical basis for a process often described in computer vision: image segmentation by region merging following a particular order in the choice of regions. We exhibit a particular blend of algorithmics and statistics whose segmentation error is, as we show, limited from both the qualitative and quantitative standpoints. This approach can be efficiently approximated in linear time/space, leading to a fast segmentation algorithm tailored to processing images described using most common numerical pixel attribute spaces. The conceptual simplicity of the approach makes it simple to modify and cope with hard noise corruption, handle occlusion, authorize the control of the segmentation scale, and process unconventional data such as spherical images. Experiments on gray-level and color images, obtained with a short readily available C-code, display the quality of the segmentations obtained.
按特定顺序选择区域进行区域合并的图像分割。我们展示了算法与统计的一种特殊融合,正如我们所表明的,其分割误差从定性和定量角度来看都是有限的。这种方法可以在线性时间/空间内有效地近似,从而产生一种针对使用最常见数值像素属性空间描述的图像进行处理的快速分割算法。该方法概念简单,易于修改以应对强噪声干扰、处理遮挡、控制分割尺度以及处理非常规数据,如球面图像。使用简短且易于获取的C代码对灰度图像和彩色图像进行的实验,展示了所获得的分割质量。