Palanker Daniel, Vankov Alexander, Huie Phil, Baccus Stephen
Department of Ophthalmology and Hansen Experimental Physics Laboratory, Stanford University, Stanford, CA 94305-4085, USA.
J Neural Eng. 2005 Mar;2(1):S105-20. doi: 10.1088/1741-2560/2/1/012. Epub 2005 Feb 22.
It has been demonstrated that electrical stimulation of the retina can produce visual percepts in blind patients suffering from macular degeneration and retinitis pigmentosa. However, current retinal implants provide very low resolution (just a few electrodes), whereas at least several thousand pixels would be required for functional restoration of sight. This paper presents the design of an optoelectronic retinal prosthetic system with a stimulating pixel density of up to 2500 pix mm(-2) (corresponding geometrically to a maximum visual acuity of 20/80). Requirements on proximity of neural cells to the stimulation electrodes are described as a function of the desired resolution. Two basic geometries of sub-retinal implants providing required proximity are presented: perforated membranes and protruding electrode arrays. To provide for natural eye scanning of the scene, rather than scanning with a head-mounted camera, the system operates similar to 'virtual reality' devices. An image from a video camera is projected by a goggle-mounted collimated infrared LED-LCD display onto the retina, activating an array of powered photodiodes in the retinal implant. The goggles are transparent to visible light, thus allowing for the simultaneous use of remaining natural vision along with prosthetic stimulation. Optical delivery of visual information to the implant allows for real-time image processing adjustable to retinal architecture, as well as flexible control of image processing algorithms and stimulation parameters.
业已证明,对视网膜进行电刺激能够使患有黄斑变性和色素性视网膜炎的盲人患者产生视觉感知。然而,目前的视网膜植入物分辨率极低(仅有几个电极),而视力功能恢复至少需要数千个像素。本文介绍了一种光电视网膜假体系统的设计,其刺激像素密度高达2500像素/平方毫米(在几何上对应于20/80的最大视力)。根据所需分辨率描述了神经细胞与刺激电极接近程度的要求。提出了两种能够提供所需接近程度的视网膜下植入物的基本几何结构:穿孔膜和突出电极阵列。为了实现对场景的自然眼扫描,而非使用头戴式摄像头进行扫描,该系统的运行方式类似于“虚拟现实”设备。来自摄像机的图像由安装在护目镜上的准直红外发光二极管 - 液晶显示器投射到视网膜上,激活视网膜植入物中的一系列有源光电二极管。护目镜对可见光透明,因此允许在假体刺激的同时使用剩余的自然视力。将视觉信息光学传递到植入物能够实现可根据视网膜结构进行调整的实时图像处理,以及对图像处理算法和刺激参数的灵活控制。