Bellazzi Riccardo, Larizza Cristiana, Magni Paolo, Bellazzi Roberto
Dipartimento di Informatica e Sistemistica, Università di Pavia, via Ferrata 1, 27100 Pavia, Italy.
Artif Intell Med. 2005 May;34(1):25-39. doi: 10.1016/j.artmed.2004.07.010.
This paper describes the temporal data mining aspects of a research project that deals with the definition of methods and tools for the assessment of the clinical performance of hemodialysis (HD) services, on the basis of the time series automatically collected during hemodialysis sessions.
Intelligent data analysis and temporal data mining techniques are applied to gain insight and to discover knowledge on the causes of unsatisfactory clinical results. In particular, two new methods for association rule discovery and temporal rule discovery are applied to the time series. Such methods exploit several pre-processing techniques, comprising data reduction, multi-scale filtering and temporal abstractions.
We have analyzed the data of more than 5800 dialysis sessions coming from 43 different patients monitored for 19 months. The qualitative rules associating the outcome parameters and the measured variables were examined by the domain experts, which were able to distinguish between rules confirming available background knowledge and unexpected but plausible rules.
The new methods proposed in the paper are suitable tools for knowledge discovery in clinical time series. Their use in the context of an auditing system for dialysis management helped clinicians to improve their understanding of the patients' behavior.
本文描述了一个研究项目的时态数据挖掘方面,该项目致力于基于血液透析(HD)过程中自动收集的时间序列,定义评估血液透析服务临床表现的方法和工具。
应用智能数据分析和时态数据挖掘技术来深入了解并发现关于临床结果不尽人意原因的知识。具体而言,将两种新的关联规则发现方法和时态规则发现方法应用于时间序列。这些方法运用了多种预处理技术,包括数据约简、多尺度滤波和时态抽象。
我们分析了来自43位不同患者的超过5800次透析治疗数据,监测时长为19个月。领域专家检查了将结果参数与测量变量相关联的定性规则,他们能够区分确认现有背景知识的规则和意外但合理的规则。
本文提出的新方法是临床时间序列知识发现的合适工具。它们在透析管理审计系统中的应用有助于临床医生更好地理解患者的情况。