Cheng Chih-Wen, Chanani Nikhil, Maher Kevin
ACM BCB. 2014 Sep;2014:211-219. doi: 10.1145/2649387.2649440.
Clinicians in intensive care units (ICUs) rely on standardized scores as risk prediction models to predict a patient's vulnerability to life-threatening events. Conventional Current scales calculate scores from a fixed set of conditions collected within a specific time window. However, modern monitoring technologies generate complex, temporal, and multimodal patient data that conventional prediction models scales cannot fully utilize. Thus, a more sophisticated model is needed to tailor individual characteristics and incorporate multiple temporal modalities for a personalized risk prediction. Furthermore, most scales models focus on adult patients. To address this needdeficiency, we propose a newly designed ICU risk prediction system, called icuARM-II, using a large-scaled pediatric ICU database from Children's Healthcare of Atlanta. This novel database contains clinical data collected in 5,739 ICU visits from 4,975 patients. We propose a temporal association rule mining framework giving clinicians a potential to perform predict risks prediction based on all available patient conditions without being restricted by a fixed observation window. We also develop a new metric that can rigidly assesses the reliability of all all generated association rules. In addition, the icuARM-II features an interactive user interface. Using the icuARM-II, our results demonstrated showed a use case of short-term mortality prediction using lab testing results, which demonstrated a potential new solution for reliable ICU risk prediction using personalized clinical data in a previously neglected population.
重症监护病房(ICU)的临床医生依靠标准化评分作为风险预测模型,以预测患者发生危及生命事件的易感性。传统的当前量表根据在特定时间窗口内收集的一组固定条件来计算分数。然而,现代监测技术产生了复杂、具有时间性和多模态的患者数据,传统的预测模型量表无法充分利用这些数据。因此,需要一个更复杂的模型来适应个体特征,并纳入多种时间模式以进行个性化风险预测。此外,大多数量表模型关注的是成年患者。为了满足这一需求,我们使用来自亚特兰大儿童医疗保健中心的大规模儿科ICU数据库,提出了一种新设计的ICU风险预测系统,称为icuARM-II。这个新颖的数据库包含了4975名患者在5739次ICU就诊中收集的临床数据。我们提出了一个时间关联规则挖掘框架,使临床医生有可能根据所有可用的患者情况进行风险预测,而不受固定观察窗口的限制。我们还开发了一种新的指标,可以严格评估所有生成的关联规则的可靠性。此外,icuARM-II具有交互式用户界面。使用icuARM-II,我们的结果展示了一个使用实验室检测结果进行短期死亡率预测的用例,这为在之前被忽视的人群中使用个性化临床数据进行可靠的ICU风险预测展示了一种潜在的新解决方案。