Suppr超能文献

迈向环境感知跌倒风险评估:利用基于惯性测量单元的步态数据和深度学习对行走路面状况进行分类

Towards Environment-Aware Fall Risk Assessment: Classifying Walking Surface Conditions Using IMU-Based Gait Data and Deep Learning.

作者信息

Yıldız Abdulnasır

机构信息

Department of Electrical and Electronics Engineering, Dicle University, Diyarbakır 21280, Turkey.

出版信息

Brain Sci. 2023 Oct 8;13(10):1428. doi: 10.3390/brainsci13101428.

Abstract

Fall risk assessment (FRA) helps clinicians make decisions about the best preventative measures to lower the risk of falls by identifying the different risks that are specific to an individual. With the development of wearable technologies such as inertial measurement units (IMUs), several free-living FRA methods based on fall predictors derived from IMU-based data have been introduced. The performance of such methods could be improved by increasing awareness of the individuals' walking environment. This study aims to introduce and analyze a 25-layer convolutional neural network model for classifying nine walking surface conditions using IMU-based gait data, providing a basis for environment-aware FRAs. A database containing data collected from thirty participants who wore six IMU sensors while walking on nine surface conditions was employed. A systematic analysis was conducted to determine the effects of gait signals (acceleration, magnetic field, and rate of turn), sensor placement, and signal segment size on the method's performance. Accuracies of 0.935 and 0.969 were achieved using a single and dual sensor, respectively, reaching an accuracy of 0.971 in the best-case scenario with optimal settings. The findings and analysis can help to develop more reliable and interpretable fall predictors, eventually leading to environment-aware FRA methods.

摘要

跌倒风险评估(FRA)通过识别个体特有的不同风险,帮助临床医生做出关于降低跌倒风险的最佳预防措施的决策。随着惯性测量单元(IMU)等可穿戴技术的发展,已经引入了几种基于从基于IMU的数据中得出的跌倒预测指标的自由生活FRA方法。通过提高对个体行走环境的认识,可以改善此类方法的性能。本研究旨在引入并分析一个25层卷积神经网络模型,该模型使用基于IMU的步态数据对九种行走地面状况进行分类,为环境感知型FRA提供依据。使用了一个数据库,该数据库包含从30名参与者收集的数据,这些参与者在九种地面状况上行走时佩戴了六个IMU传感器。进行了系统分析,以确定步态信号(加速度、磁场和转弯速率)、传感器放置和信号段大小对该方法性能的影响。分别使用单个和双传感器时,准确率分别达到0.935和0.969,在具有最佳设置的最佳情况下,准确率达到0.971。这些发现和分析有助于开发更可靠且可解释的跌倒预测指标,最终促成环境感知型FRA方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/81b3/10605788/d79252ca8f03/brainsci-13-01428-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验