Suppr超能文献

利用内置传感器表征人机交互行走过程中的假肢控制故障

Characterizing Prosthesis Control Fault during Human-Prosthesis Interactive Walking Using Intrinsic Sensors.

作者信息

Naseri Amirreza, Liu Ming, Lee I-Chieh, Liu Wentao, Huang Helen He

机构信息

UNC/NCSU Department of Biomedical Engineering, NC State University, Raleigh, NC 27695 USA.

University of North Carolina at Chapel Hill, Chapel Hill, NC 27599 USA.

出版信息

IEEE Robot Autom Lett. 2022 Jul;7(3):8307-8314. doi: 10.1109/lra.2022.3186503. Epub 2022 Jun 27.

Abstract

The physical interactions between wearable lower limb robots and humans have been investigated to inform effective robot design for walking augmentation. However, human-robot interactions when internal faults occur within robots have not been systematically reported, but it is essential to improve the robustness of robotic devices and ensure the user's safety. This paper aims to (1) present a methodology to characterize the behavior of the robotic transfemoral prosthesis as an effective wearable robot platform while interacting with the users in the presence of internal faults, and (2) identify the potential data sources for accurate detection of the prosthesis fault. We first obtained the human perceived response in terms of their walking stability when the prosthesis control fault (inappropriate intrinsic control output/command) was emulated/applied in level-ground walking. Then the measurements and their features, obtained from the transfemoral prosthesis, were examined for the emulated faults that elicited a sense of instability in human users. The optimal features that contributed the most in separating faulty interaction from the normal walking condition were determined using two machine-learning-based approaches: One-Class Support Vector Machine (OCSVM) and Mahalanobis Distance (MD) classifier. The OCSVM anomaly detector could achieve an average sensitivity of 85.7 % and an average false alarm rate of 1.7 % with a reasonable detecting time of 147.6 ms for detecting emulated control errors among all subjects. The result demonstrates the potential of using machine-learning-based schemes in identifying prosthesis control faults based on intrinsic sensors on the prosthesis. This study presents a procedure to study human-robot fault tolerance and inform the future design of robust prosthesis control.

摘要

为了设计出有效的助力行走机器人,人们对可穿戴下肢机器人与人体之间的物理交互进行了研究。然而,机器人内部出现故障时的人机交互尚未得到系统报道,但这对于提高机器人设备的鲁棒性和确保用户安全至关重要。本文旨在:(1)提出一种方法,用于描述作为有效可穿戴机器人平台的机器人经股假肢在出现内部故障时与用户交互时的行为;(2)确定用于准确检测假肢故障的潜在数据源。我们首先在平地行走中模拟/施加假肢控制故障(不适当的固有控制输出/指令)时,获取了人体在行走稳定性方面的感知响应。然后,检查从经股假肢获得的测量数据及其特征,以查找那些会引起用户不稳定感的模拟故障。使用两种基于机器学习的方法确定了在区分故障交互与正常行走状态方面贡献最大的最佳特征:单类支持向量机(OCSVM)和马氏距离(MD)分类器。OCSVM异常检测器在检测所有受试者的模拟控制误差时,平均灵敏度可达85.7%,平均误报率为1.7%,检测时间合理,为147.6毫秒。结果表明了使用基于机器学习的方案根据假肢上的固有传感器识别假肢控制故障的潜力。本研究提出了一种研究人机容错能力的程序,并为未来鲁棒假肢控制的设计提供参考。

相似文献

5
Whole Body Awareness for Controlling a Robotic Transfemoral Prosthesis.用于控制机器人经股假肢的全身感知
Front Neurorobot. 2017 May 30;11:25. doi: 10.3389/fnbot.2017.00025. eCollection 2017.

本文引用的文献

1
Neuromechanical force-based control of a powered prosthetic foot.基于神经机械力的动力假肢足部控制
Wearable Technol. 2020 Oct 23;1:e6. doi: 10.1017/wtc.2020.6. eCollection 2020.
4
9
Detection of and Compensation for EMG Disturbances for Powered Lower Limb Prosthesis Control.用于动力下肢假肢控制的肌电干扰检测与补偿
IEEE Trans Neural Syst Rehabil Eng. 2016 Feb;24(2):226-34. doi: 10.1109/TNSRE.2015.2413393. Epub 2015 Mar 27.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验