Suppr超能文献

人中性粒细胞介导的铜绿假单胞菌生物膜形成增强

Enhanced Pseudomonas aeruginosa biofilm development mediated by human neutrophils.

作者信息

Walker Travis S, Tomlin Kerry L, Worthen G Scott, Poch Katie R, Lieber Jonathan G, Saavedra Milene T, Fessler Michael B, Malcolm Kenneth C, Vasil Michael L, Nick Jerry A

机构信息

National Jewish Medical and Research Center, D202, 1400 Jackson Street, Denver, CO 80206, USA.

出版信息

Infect Immun. 2005 Jun;73(6):3693-701. doi: 10.1128/IAI.73.6.3693-3701.2005.

Abstract

Cystic fibrosis (CF) lung disease features persistent neutrophil accumulation to the airways from the time of infancy. CF children are frequently exposed to Pseudomonas aeruginosa, and by adulthood, 80% of CF patients are chronically infected. The formation of biofilms is a particularly important phenotypic characteristic of P. aeruginosa that allows for bacterial survival despite aggressive antibiotic therapy and an exuberant immune response. Here, we show that the presence of neutrophils enhances initial P. aeruginosa biofilm development over a period of 72 h through the formation of polymers comprised of actin and DNA. F-actin was found to be a site of attachment for P. aeruginosa. These actin and DNA polymers are present in CF sputum, and disruption of the polymers dispersed the associated P. aeruginosa cells and reduced biofilm development. These findings demonstrate a potential maladaptation of the primary innate response. When the host fails to eradicate the infection, cellular components from necrotic neutrophils can serve as a biological matrix to facilitate P. aeruginosa biofilm formation.

摘要

囊性纤维化(CF)肺部疾病的特征是从婴儿期开始中性粒细胞持续在气道中积聚。CF患儿经常接触铜绿假单胞菌,到成年时,80%的CF患者会受到慢性感染。生物膜的形成是铜绿假单胞菌一个特别重要的表型特征,使得细菌在积极的抗生素治疗和旺盛的免疫反应下仍能存活。在此,我们表明中性粒细胞的存在通过由肌动蛋白和DNA组成的聚合物的形成,在72小时内增强了铜绿假单胞菌生物膜的初始发育。发现F-肌动蛋白是铜绿假单胞菌的附着位点。这些肌动蛋白和DNA聚合物存在于CF痰液中,聚合物的破坏使相关的铜绿假单胞菌细胞分散,并减少了生物膜的发育。这些发现证明了主要先天反应的潜在适应不良。当宿主无法根除感染时,坏死中性粒细胞的细胞成分可作为生物基质促进铜绿假单胞菌生物膜的形成。

相似文献

1
Enhanced Pseudomonas aeruginosa biofilm development mediated by human neutrophils.
Infect Immun. 2005 Jun;73(6):3693-701. doi: 10.1128/IAI.73.6.3693-3701.2005.
5
Pseudomonas aeruginosa biofilm formation in the cystic fibrosis airway.
Pulm Pharmacol Ther. 2008 Aug;21(4):595-9. doi: 10.1016/j.pupt.2007.12.001. Epub 2008 Jan 29.
6
Glycerol metabolism promotes biofilm formation by Pseudomonas aeruginosa.
Can J Microbiol. 2016 Aug;62(8):704-10. doi: 10.1139/cjm-2016-0119. Epub 2016 May 3.
9
Effect of Shear Stress on Pseudomonas aeruginosa Isolated from the Cystic Fibrosis Lung.
mBio. 2016 Aug 2;7(4):e00813-16. doi: 10.1128/mBio.00813-16.
10
Mucoid conversion of Pseudomonas aeruginosa by hydrogen peroxide: a mechanism for virulence activation in the cystic fibrosis lung.
Microbiology (Reading). 1999 Jun;145 ( Pt 6):1349-1357. doi: 10.1099/13500872-145-6-1349.

引用本文的文献

2
What Is a Biofilm? Lessons Learned from Interactions with Immune Cells.
Int J Mol Sci. 2024 Oct 30;25(21):11684. doi: 10.3390/ijms252111684.
3
in chronic lung disease: untangling the dysregulated host immune response.
Front Immunol. 2024 Jun 28;15:1405376. doi: 10.3389/fimmu.2024.1405376. eCollection 2024.
4
Beyond the double helix: the multifaceted landscape of extracellular DNA in biofilms.
Front Cell Infect Microbiol. 2024 Jun 5;14:1400648. doi: 10.3389/fcimb.2024.1400648. eCollection 2024.
5
Probiotic Effect of on Oral Pathogens: An In Vitro Study.
Pathogens. 2024 Apr 24;13(5):351. doi: 10.3390/pathogens13050351.
6
Extracellular host DNA contributes to pathogenic biofilm formation during periodontitis.
Front Cell Infect Microbiol. 2024 May 8;14:1374817. doi: 10.3389/fcimb.2024.1374817. eCollection 2024.
7
Multitasking functions of bacterial extracellular DNA in biofilms.
J Bacteriol. 2024 Apr 18;206(4):e0000624. doi: 10.1128/jb.00006-24. Epub 2024 Mar 6.
8
Neutrophil extracellular traps in bacterial infections and evasion strategies.
Front Immunol. 2024 Feb 16;15:1357967. doi: 10.3389/fimmu.2024.1357967. eCollection 2024.
9
Emerging Issues and Initial Insights into Bacterial Biofilms: From Orthopedic Infection to Metabolomics.
Antibiotics (Basel). 2024 Feb 13;13(2):184. doi: 10.3390/antibiotics13020184.

本文引用的文献

1
Neutrophil extracellular traps kill bacteria.
Science. 2004 Mar 5;303(5663):1532-5. doi: 10.1126/science.1092385.
2
Differentiation and developmental pathways of uropathogenic Escherichia coli in urinary tract pathogenesis.
Proc Natl Acad Sci U S A. 2004 Feb 3;101(5):1333-8. doi: 10.1073/pnas.0308125100. Epub 2004 Jan 22.
3
Biofilm formation by Pseudomonas aeruginosa: role of the C4-HSL cell-to-cell signal and inhibition by azithromycin.
J Antimicrob Chemother. 2003 Oct;52(4):598-604. doi: 10.1093/jac/dkg397. Epub 2003 Sep 1.
4
Regulation of neutrophil apoptosis.
Chem Immunol Allergy. 2003;83:204-24. doi: 10.1159/000071562.
5
Biofilm formation by Pseudomonas aeruginosa wild type, flagella and type IV pili mutants.
Mol Microbiol. 2003 Jun;48(6):1511-24. doi: 10.1046/j.1365-2958.2003.03525.x.
6
Whole-genome sequence variation among multiple isolates of Pseudomonas aeruginosa.
J Bacteriol. 2003 Feb;185(4):1316-25. doi: 10.1128/JB.185.4.1316-1325.2003.
10
A component of innate immunity prevents bacterial biofilm development.
Nature. 2002 May 30;417(6888):552-5. doi: 10.1038/417552a.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验