Suppr超能文献

Kv1.3通道中correolide的蒙特卡罗能量最小化:钾离子在配体-受体相互作用中的可能作用。

Monte Carlo-energy minimization of correolide in the Kv1.3 channel: possible role of potassium ion in ligand-receptor interactions.

作者信息

Bruhova Iva, Zhorov Boris S

机构信息

Department of Biochemistry and Biomedical Sciences, McMaster University, 1200 Main Street West, Hamilton, Ontario, L8N 3Z5, Canada.

出版信息

BMC Struct Biol. 2007 Jan 29;7:5. doi: 10.1186/1472-6807-7-5.

Abstract

BACKGROUND

Correolide, a nortriterpene isolated from the Costa Rican tree Spachea correa, is a novel immunosuppressant, which blocks Kv1.3 channels in human T lymphocytes. Earlier mutational studies suggest that correolide binds in the channel pore. Correolide has several nucleophilic groups, but the pore-lining helices in Kv1.3 are predominantly hydrophobic raising questions about the nature of correolide-channel interactions.

RESULTS

We employed the method of Monte Carlo (MC) with energy minimization to search for optimal complexes of correolide in Kv1.2-based models of the open Kv1.3 with potassium binding sites 2/4 or 1/3/5 loaded with K+ ions. The energy was MC-minimized from many randomly generated starting positions and orientations of the ligand. In all the predicted low-energy complexes, oxygen atoms of correolide chelate a K+ ion. Correolide-sensing residues known from mutational analysis along with the ligand-bound K+ ion provide major contributions to the ligand-binding energy. Deficiency of K+ ions in the selectivity filter of C-type inactivated Kv1.3 would stabilize K+-bound correolide in the inner pore.

CONCLUSION

Our study explains the paradox that cationic and nucleophilic ligands bind to the same region in the inner pore of K+ channels and suggests that a K+ ion is an important determinant of the correolide receptor and possibly receptors of other nucleophilic blockers of the inner pore of K+ channels.

摘要

背景

柯瑞内酯是从哥斯达黎加树木斯帕切亚柯瑞中分离出的一种三萜类化合物,是一种新型免疫抑制剂,可阻断人类T淋巴细胞中的Kv1.3通道。早期的突变研究表明柯瑞内酯结合在通道孔中。柯瑞内酯有几个亲核基团,但Kv1.3中的孔内衬螺旋主要是疏水的,这引发了关于柯瑞内酯与通道相互作用本质的问题。

结果

我们采用能量最小化的蒙特卡罗(MC)方法,在基于Kv1.2的开放Kv1.3模型中寻找柯瑞内酯的最佳复合物,该模型的钾结合位点2/4或1/3/5加载有K+离子。从配体的许多随机生成的起始位置和方向开始,将能量进行MC最小化。在所有预测的低能量复合物中,柯瑞内酯的氧原子螯合一个K+离子。突变分析中已知的柯瑞内酯感应残基以及与配体结合的K+离子对配体结合能有主要贡献。C型失活Kv1.3的选择性过滤器中K+离子的缺乏会使结合K+的柯瑞内酯在内孔中稳定。

结论

我们的研究解释了阳离子和亲核配体结合到K+通道内孔同一区域这一矛盾现象,并表明K+离子是柯瑞内酯受体以及可能是K+通道内孔其他亲核阻滞剂受体的重要决定因素。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ddea/1796882/49d26caef3db/1472-6807-7-5-1.jpg

相似文献

3
Interaction of d-tubocurarine with potassium channels: molecular modeling and ligand binding.
Mol Pharmacol. 2006 Apr;69(4):1356-65. doi: 10.1124/mol.105.017970. Epub 2006 Jan 3.
5
Potassium channel block by a tripartite complex of two cationophilic ligands and a potassium ion.
Mol Pharmacol. 2010 Oct;78(4):588-99. doi: 10.1124/mol.110.064014. Epub 2010 Jul 2.
7
Potent Kv1.3 inhibitors from correolide-modification of the C18 position.
Bioorg Med Chem Lett. 2005 Jan 17;15(2):447-51. doi: 10.1016/j.bmcl.2004.10.058.
9
Homology modeling of Kv1.5 channel block by cationic and electroneutral ligands.
Biochim Biophys Acta. 2014 Mar;1838(3):978-87. doi: 10.1016/j.bbamem.2013.11.019. Epub 2013 Dec 5.

引用本文的文献

1
Energy for wild-type acetylcholine receptor channel gating from different choline derivatives.
Biophys J. 2013 Feb 5;104(3):565-74. doi: 10.1016/j.bpj.2012.11.3833.
2
Structure-activity relationship exploration of Kv1.3 blockers based on diphenoxylate.
Bioorg Med Chem Lett. 2012 Dec 1;22(23):7106-9. doi: 10.1016/j.bmcl.2012.09.080. Epub 2012 Sep 29.
3
A specific two-pore domain potassium channel blocker defines the structure of the TASK-1 open pore.
J Biol Chem. 2011 Apr 22;286(16):13977-84. doi: 10.1074/jbc.M111.227884. Epub 2011 Mar 1.
4
Use of Kv1.3 blockers for inflammatory skin conditions.
Curr Med Chem. 2010;17(26):2882-96. doi: 10.2174/092986710792065072.
6
Potassium channel block by a tripartite complex of two cationophilic ligands and a potassium ion.
Mol Pharmacol. 2010 Oct;78(4):588-99. doi: 10.1124/mol.110.064014. Epub 2010 Jul 2.
8
Docking flexible ligands in proteins with a solvent exposure- and distance-dependent dielectric function.
J Comput Aided Mol Des. 2010 Feb;24(2):91-105. doi: 10.1007/s10822-009-9317-9. Epub 2010 Jan 30.
9
Structural modeling of calcium binding in the selectivity filter of the L-type calcium channel.
Eur Biophys J. 2010 Apr;39(5):839-53. doi: 10.1007/s00249-009-0574-2. Epub 2010 Jan 7.
10
Voltage-gated potassium channels as therapeutic targets.
Nat Rev Drug Discov. 2009 Dec;8(12):982-1001. doi: 10.1038/nrd2983.

本文引用的文献

1
An all atom force field for simulations of proteins and nucleic acids.
J Comput Chem. 1986 Apr;7(2):230-252. doi: 10.1002/jcc.540070216.
2
Atomic determinants of state-dependent block of sodium channels by charged local anesthetics and benzocaine.
FEBS Lett. 2006 Nov 13;580(26):6027-32. doi: 10.1016/j.febslet.2006.10.035. Epub 2006 Oct 24.
3
Interaction of d-tubocurarine with potassium channels: molecular modeling and ligand binding.
Mol Pharmacol. 2006 Apr;69(4):1356-65. doi: 10.1124/mol.105.017970. Epub 2006 Jan 3.
4
How batrachotoxin modifies the sodium channel permeation pathway: computer modeling and site-directed mutagenesis.
Mol Pharmacol. 2006 Mar;69(3):788-95. doi: 10.1124/mol.105.018200. Epub 2005 Dec 14.
5
Toward high-resolution de novo structure prediction for small proteins.
Science. 2005 Sep 16;309(5742):1868-71. doi: 10.1126/science.1113801.
6
Sodium channel activators: model of binding inside the pore and a possible mechanism of action.
FEBS Lett. 2005 Aug 15;579(20):4207-12. doi: 10.1016/j.febslet.2005.07.017.
7
Crystal structure of a mammalian voltage-dependent Shaker family K+ channel.
Science. 2005 Aug 5;309(5736):897-903. doi: 10.1126/science.1116269. Epub 2005 Jul 7.
8
KvAP-based model of the pore region of shaker potassium channel is consistent with cadmium- and ligand-binding experiments.
Biophys J. 2005 Aug;89(2):1020-9. doi: 10.1529/biophysj.105.062240. Epub 2005 May 20.
9
Structural basis of TEA blockade in a model potassium channel.
Nat Struct Mol Biol. 2005 May;12(5):454-9. doi: 10.1038/nsmb929. Epub 2005 Apr 24.
10
Potent Kv1.3 inhibitors from correolide-modification of the C18 position.
Bioorg Med Chem Lett. 2005 Jan 17;15(2):447-51. doi: 10.1016/j.bmcl.2004.10.058.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验