Christensen William F, Yetkin F Zerrin
Department of Statistics (Christensen), Brigham Young University, Provo, Utah, USA.
Stat Med. 2005 Aug 30;24(16):2539-56. doi: 10.1002/sim.2111.
Functional magnetic resonance imaging (fMRI) allows neuroscientists to assess brain function by evaluating haemodynamic activity (blood flow) when a stimulus is present or absent. In clinical practice, the hearing levels of individuals are determined using an audiometer that allows presentation of a pure-tone of specific intensity and frequency. Functional images of the auditory nervous system have been obtained using stimuli such as pure-tone, speech, noise, etc. However, the observed activation evoked by the stimulus is confounded with the neuronal response evoked by scanner noise generated during imaging. Hence, researchers have been developing fMRI techniques to overcome the inadvertent effect of scanner noise on fMRI studies of the auditory cortex. Silent event related fMRI is a recently reported fMRI technique diminishing the confounding effects of background scanner noise. A drawback of sfMRI is that it requires long acquisition times (30-40 min) to achieve statistically significant activation. An additional complication associated with all fMRI data is that measurements obtained at consecutive times tend to exhibit substantial temporal correlation. Such correlation structure complicates the identification of brain locations (voxels) demonstrating statistically significant activation. We propose an approach for detecting activation with high statistical power and low false-positive rate. To accomplish these goals of high power and low type I error rate in sfMRI with shorter acquisition times, we describe a statistical model that accounts for the spatial and temporal correlation structure of the haemodynamic response. Temporal dependence within each voxel's measurements is modelled, and a regional measurement-error-free kriging predictor is used to combine information from neighbouring voxels when assessing voxel activation. Instead of simply applying a post hoc smoothing to thevoxelwise test statistics (e.g. t statistics), we attempt to make optimal use of information in the locality of each voxel when estimating the voxel's mean, variance, and temporal dependence parameters. The primary advantage to this spatial modelling approach is that the degree to which voxel parameters are smoothed is driven by the data. Thus, we are not subjectively smoothing noisy data, but objectively estimating the noise-free version of the spatial processes associated with the response. The resulting voxel activation maps exhibit substantially more spatial continuity than other currently used approaches, while exhibiting desirable inferential properties including a lower false-positive rate and high power for detection of activated regions. Minimal computational resources are necessary to carry out the approach, which yielded voxel activation maps for our experiment in only minutes.
功能磁共振成像(fMRI)使神经科学家能够通过评估刺激出现或不出现时的血液动力学活动(血流量)来评估大脑功能。在临床实践中,使用听力计来确定个体的听力水平,该听力计可以呈现特定强度和频率的纯音。已经使用诸如纯音、语音、噪声等刺激获得了听觉神经系统的功能图像。然而,观察到的由刺激引起的激活与成像过程中产生的扫描仪噪声引起的神经元反应相混淆。因此,研究人员一直在开发fMRI技术,以克服扫描仪噪声对听觉皮层fMRI研究的意外影响。静息事件相关fMRI是最近报道的一种fMRI技术,可减少背景扫描仪噪声的混杂效应。sfMRI的一个缺点是它需要较长的采集时间(30 - 40分钟)才能实现具有统计学意义的激活。与所有fMRI数据相关的另一个复杂问题是,连续时间获得的测量值往往表现出显著的时间相关性。这种相关结构使得识别显示具有统计学意义激活的脑区位置(体素)变得复杂。我们提出了一种具有高统计功效和低假阳性率的激活检测方法。为了在更短的采集时间内实现sfMRI的高功效和低I型错误率的这些目标,我们描述了一个统计模型,该模型考虑了血液动力学反应的空间和时间相关结构。对每个体素测量值内的时间依赖性进行建模,并在评估体素激活时使用区域无测量误差克里金预测器来组合来自相邻体素的信息。当估计体素的均值、方差和时间依赖性参数时,我们不是简单地对体素级测试统计量(例如t统计量)进行事后平滑,而是尝试在每个体素的局部区域中最优地利用信息。这种空间建模方法的主要优点是,体素参数的平滑程度由数据驱动。因此,我们不是主观地对噪声数据进行平滑,而是客观地估计与反应相关的空间过程的无噪声版本。所得的体素激活图比目前使用的其他方法表现出更多的空间连续性,同时表现出理想的推断特性,包括较低的假阳性率和检测激活区域时的高功效。执行该方法所需的计算资源最少,可以在几分钟内为我们的实验生成体素激活图。