Suppr超能文献

使用贝叶斯网络挖掘遗传流行病学数据I:贝叶斯网络及示例应用(血浆载脂蛋白E水平)

Mining genetic epidemiology data with Bayesian networks I: Bayesian networks and example application (plasma apoE levels).

作者信息

Rodin Andrei S, Boerwinkle Eric

机构信息

Human Genetics Center, School of Public Health, University of Texas Health Science Center Houston, TX 77030, USA.

出版信息

Bioinformatics. 2005 Aug 1;21(15):3273-8. doi: 10.1093/bioinformatics/bti505. Epub 2005 May 24.

Abstract

MOTIVATION

The wealth of single nucleotide polymorphism (SNP) data within candidate genes and anticipated across the genome poses enormous analytical problems for studies of genotype-to-phenotype relationships, and modern data mining methods may be particularly well suited to meet the swelling challenges. In this paper, we introduce the method of Belief (Bayesian) networks to the domain of genotype-to-phenotype analyses and provide an example application.

RESULTS

A Belief network is a graphical model of a probabilistic nature that represents a joint multivariate probability distribution and reflects conditional independences between variables. Given the data, optimal network topology can be estimated with the assistance of heuristic search algorithms and scoring criteria. Statistical significance of edge strengths can be evaluated using Bayesian methods and bootstrapping. As an example application, the method of Belief networks was applied to 20 SNPs in the apolipoprotein (apo) E gene and plasma apoE levels in a sample of 702 individuals from Jackson, MS. Plasma apoE level was the primary target variable. These analyses indicate that the edge between SNP 4075, coding for the well-known epsilon2 allele, and plasma apoE level was strong. Belief networks can effectively describe complex uncertain processes and can both learn from data and incorporate prior knowledge.

AVAILABILITY

Various alternative and supplemental networks (not given in the text) as well as source code extensions, are available from the authors.

SUPPLEMENTARY INFORMATION

http://bioinformatics.oxfordjournals.org.

摘要

动机

候选基因内以及全基因组中预计存在的大量单核苷酸多态性(SNP)数据,给基因型与表型关系的研究带来了巨大的分析难题,而现代数据挖掘方法可能特别适合应对日益增加的挑战。在本文中,我们将信念(贝叶斯)网络方法引入到基因型与表型分析领域,并提供了一个应用实例。

结果

信念网络是一种概率性质的图形模型,它表示联合多元概率分布,并反映变量之间的条件独立性。给定数据后,可以借助启发式搜索算法和评分标准来估计最优网络拓扑结构。可以使用贝叶斯方法和自展法评估边强度的统计显著性。作为一个应用实例,信念网络方法被应用于来自密西西比州杰克逊市的702名个体样本中的载脂蛋白(apo)E基因的20个SNP和血浆apoE水平。血浆apoE水平是主要的目标变量。这些分析表明,编码著名的ε2等位基因的SNP 4075与血浆apoE水平之间的边很强。信念网络可以有效地描述复杂的不确定过程,并且既能从数据中学习,又能纳入先验知识。

可用性

作者提供了各种替代和补充网络(文中未给出)以及源代码扩展。

补充信息

http://bioinformatics.oxfordjournals.org。

相似文献

4
Visualization of genomic aberrations using Affymetrix SNP arrays.使用Affymetrix SNP阵列对基因组畸变进行可视化分析。
Bioinformatics. 2007 Feb 15;23(4):496-7. doi: 10.1093/bioinformatics/btl608. Epub 2006 Nov 30.

引用本文的文献

8
Network Medicine: New Paradigm in the -Omics Era.网络医学:-组学时代的新范式。
Anat Physiol. 2011 Dec 13;1(1). doi: 10.4172/2161-0940.1000e106.

本文引用的文献

3
Generalized T2 test for genome association studies.用于全基因组关联研究的广义T2检验。
Am J Hum Genet. 2002 May;70(5):1257-68. doi: 10.1086/340392. Epub 2002 Mar 29.
4
A train of thoughts on gene mapping.关于基因图谱的一系列思考。
Theor Popul Biol. 2001 Nov;60(3):149-53. doi: 10.1006/tpbi.2001.1536.
7
Using Bayesian networks to analyze expression data.使用贝叶斯网络分析表达数据。
J Comput Biol. 2000;7(3-4):601-20. doi: 10.1089/106652700750050961.
9
Sequential methods of analysis for genome scans.基因组扫描的序贯分析方法。
Adv Genet. 2001;42:499-514. doi: 10.1016/s0065-2660(01)42039-6.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验