Suppr超能文献

基于人群的研究设计中代谢组学与其他组学数据的整合:流行病学视角

Integration of Metabolomic and Other Omics Data in Population-Based Study Designs: An Epidemiological Perspective.

作者信息

Chu Su H, Huang Mengna, Kelly Rachel S, Benedetti Elisa, Siddiqui Jalal K, Zeleznik Oana A, Pereira Alexandre, Herrington David, Wheelock Craig E, Krumsiek Jan, McGeachie Michael, Moore Steven C, Kraft Peter, Mathé Ewy, Lasky-Su Jessica

机构信息

Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA.

Institute for Computational Biomedicine, Englander Institute for Precision Medicine, Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY 10021, USA.

出版信息

Metabolites. 2019 Jun 18;9(6):117. doi: 10.3390/metabo9060117.

Abstract

It is not controversial that study design considerations and challenges must be addressed when investigating the linkage between single omic measurements and human phenotypes. It follows that such considerations are just as critical, if not more so, in the context of multi-omic studies. In this review, we discuss (1) epidemiologic principles of study design, including selection of biospecimen source(s) and the implications of the timing of sample collection, in the context of a multi-omic investigation, and (2) the strengths and limitations of various techniques of data integration across multi-omic data types that may arise in population-based studies utilizing metabolomic data.

摘要

在研究单组学测量与人类表型之间的联系时,研究设计的考量和挑战必须得到解决,这一点并无争议。因此,在多组学研究的背景下,这些考量即便不是更关键,也同样至关重要。在本综述中,我们讨论了:(1)在多组学研究背景下,研究设计的流行病学原则,包括生物样本来源的选择以及样本采集时间的影响;(2)在利用代谢组学数据的基于人群的研究中,跨多组学数据类型的各种数据整合技术的优势和局限性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fd1b/6630728/0630bcfbaefb/metabolites-09-00117-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验