Suppr超能文献

诺氟沙星诱导的DNA回旋酶切割复合物会阻断大肠杆菌的复制叉,在体内造成双链断裂。

Norfloxacin-induced DNA gyrase cleavage complexes block Escherichia coli replication forks, causing double-stranded breaks in vivo.

作者信息

Pohlhaus Jennifer Reineke, Kreuzer Kenneth N

机构信息

Department of Biochemistry, Duke University Medical Center, Durham, NC 27710, USA.

出版信息

Mol Microbiol. 2005 Jun;56(6):1416-29. doi: 10.1111/j.1365-2958.2005.04638.x.

Abstract

Antibacterial quinolones inhibit type II DNA topoisomerases by stabilizing covalent topoisomerase-DNA cleavage complexes, which are apparently transformed into double-stranded breaks by cellular processes such as replication. We used plasmid pBR322 and two-dimensional agarose gel electrophoresis to examine the collision of replication forks with quinolone-induced gyrase-DNA cleavage complexes in Escherichia coli. Restriction endonuclease-digested DNA exhibited a bubble arc with discrete spots, indicating that replication forks had been stalled. The most prominent spot depended upon the strong gyrase binding site of pBR322, providing direct evidence that quinolone-induced cleavage complexes block bacterial replication forks in vivo. We differentiated between stalled forks that do or do not contain bound cleavage complex by extracting DNA under different conditions. Resealing conditions allow gyrase to efficiently reseal the transient breaks within cleavage complexes, while cleavage conditions cause the latent breaks to be revealed. These experiments showed that some stalled forks did not contain a cleavage complex, implying that gyrase had dissociated in vivo and yet the fork had not restarted at the time of DNA isolation. Additionally, some branched plasmid DNA isolated under resealing conditions nonetheless contained broken DNA ends. We discuss a model for the creation of double-stranded breaks by an indirect mechanism after quinolone treatment.

摘要

抗菌喹诺酮类药物通过稳定共价拓扑异构酶 - DNA 裂解复合物来抑制 II 型 DNA 拓扑异构酶,这些复合物显然会通过复制等细胞过程转化为双链断裂。我们使用质粒 pBR322 和二维琼脂糖凝胶电泳来检测大肠杆菌中复制叉与喹诺酮诱导的gyrase - DNA 裂解复合物的碰撞。经限制性内切酶消化的 DNA 呈现出带有离散斑点的气泡弧,表明复制叉已停滞。最突出的斑点取决于 pBR322 的强gyrase 结合位点,这提供了直接证据,证明喹诺酮诱导的裂解复合物在体内会阻断细菌复制叉。我们通过在不同条件下提取 DNA,区分了含有或不含有结合裂解复合物的停滞复制叉。重新封闭条件可使gyrase 有效重新封闭裂解复合物内的瞬时断裂,而裂解条件会使潜在断裂显现出来。这些实验表明,一些停滞的复制叉不含有裂解复合物,这意味着gyrase 在体内已解离,但在 DNA 分离时复制叉尚未重新启动。此外,在重新封闭条件下分离的一些分支质粒 DNA 仍然含有断裂的 DNA 末端。我们讨论了喹诺酮处理后通过间接机制产生双链断裂的模型。

相似文献

2
DNA gyrase and topoisomerase IV on the bacterial chromosome: quinolone-induced DNA cleavage.
J Mol Biol. 1996 May 17;258(4):627-37. doi: 10.1006/jmbi.1996.0274.
3
An antitumor drug-induced topoisomerase cleavage complex blocks a bacteriophage T4 replication fork in vivo.
Mol Cell Biol. 2000 Jan;20(2):594-603. doi: 10.1128/MCB.20.2.594-603.2000.
4
Isolation and quantitation of topoisomerase complexes accumulated on Escherichia coli chromosomal DNA.
Antimicrob Agents Chemother. 2012 Nov;56(11):5458-64. doi: 10.1128/AAC.01182-12. Epub 2012 Aug 6.
5
Topoisomerase IV is a target of quinolones in Escherichia coli.
Proc Natl Acad Sci U S A. 1995 Dec 5;92(25):11801-5. doi: 10.1073/pnas.92.25.11801.
6
Analysis of RuvABC and RecG involvement in the escherichia coli response to the covalent topoisomerase-DNA complex.
J Bacteriol. 2010 Sep;192(17):4445-51. doi: 10.1128/JB.00350-10. Epub 2010 Jul 2.
7
Distribution of gyrase and topoisomerase IV on bacterial nucleoid: implications for nucleoid organization.
Nucleic Acids Res. 2006 Jun 6;34(10):3128-38. doi: 10.1093/nar/gkl392. Print 2006.
8
Fluoroquinolone-Gyrase-DNA Cleaved Complexes.
Methods Mol Biol. 2018;1703:269-281. doi: 10.1007/978-1-4939-7459-7_19.

引用本文的文献

1
The Global Challenge of Antimicrobial Resistance: Mechanisms, Case Studies, and Mitigation Approaches.
Health Sci Rep. 2025 Jul 23;8(7):e71077. doi: 10.1002/hsr2.71077. eCollection 2025 Jul.
2
Gyrase and Topoisomerase IV: Recycling Old Targets for New Antibacterials to Combat Fluoroquinolone Resistance.
ACS Infect Dis. 2024 Apr 12;10(4):1097-1115. doi: 10.1021/acsinfecdis.4c00128. Epub 2024 Apr 2.
3
Unusual and Unconsidered Mechanisms of Bacterial Resilience and Resistance to Quinolones.
Life (Basel). 2024 Mar 14;14(3):383. doi: 10.3390/life14030383.
4
TisB protein is the single molecular determinant underlying multiple downstream effects of ofloxacin in .
Sci Adv. 2024 Mar 29;10(13):eadk1577. doi: 10.1126/sciadv.adk1577. Epub 2024 Mar 27.
5
Widespread prevalence of a methylation-dependent switch to activate an essential DNA damage response in bacteria.
PLoS Biol. 2024 Mar 11;22(3):e3002540. doi: 10.1371/journal.pbio.3002540. eCollection 2024 Mar.
6
Enzymatic Processing of DNA-Protein Crosslinks.
Genes (Basel). 2024 Jan 10;15(1):85. doi: 10.3390/genes15010085.
7
Bacterial Argonaute Proteins Aid Cell Division in the Presence of Topoisomerase Inhibitors in Escherichia coli.
Microbiol Spectr. 2023 Jun 15;11(3):e0414622. doi: 10.1128/spectrum.04146-22. Epub 2023 Apr 27.
8
Antibiotics and Bacterial Resistance-A Short Story of an Endless Arms Race.
Int J Mol Sci. 2023 Mar 17;24(6):5777. doi: 10.3390/ijms24065777.
9
Mechanistic insight into the repair of C8-linked pyrrolobenzodiazepine monomer-mediated DNA damage.
RSC Med Chem. 2022 Oct 18;13(12):1621-1633. doi: 10.1039/d2md00194b. eCollection 2022 Dec 14.

本文引用的文献

1
Isolation of SOS constitutive mutants of Escherichia coli.
J Bacteriol. 2004 Nov;186(21):7149-60. doi: 10.1128/JB.186.21.7149-7160.2004.
2
Solution structure of the hypothetical protein YqgF from Escherichia coli reveals an RNAse H fold.
J Biomol NMR. 2003 Dec;27(4):389-92. doi: 10.1023/a:1025840121177.
3
The RuvAB branch migration complex can displace topoisomerase IV.quinolone.DNA ternary complexes.
J Biol Chem. 2003 Nov 28;278(48):48485-90. doi: 10.1074/jbc.M304217200. Epub 2003 Sep 17.
4
Endonuclease cleavage of blocked replication forks: An indirect pathway of DNA damage from antitumor drug-topoisomerase complexes.
Proc Natl Acad Sci U S A. 2003 Apr 29;100(9):5046-51. doi: 10.1073/pnas.0835166100. Epub 2003 Apr 18.
5
PriA supports two distinct pathways for replication restart in UV-irradiated Escherichia coli cells.
Mol Microbiol. 2003 Feb;47(4):1091-100. doi: 10.1046/j.1365-2958.2003.03357.x.
6
Cellular roles of DNA topoisomerases: a molecular perspective.
Nat Rev Mol Cell Biol. 2002 Jun;3(6):430-40. doi: 10.1038/nrm831.
8
Topoisomerase II can unlink replicating DNA by precatenane removal.
EMBO J. 2001 Nov 15;20(22):6509-19. doi: 10.1093/emboj/20.22.6509.
9
Topological challenges to DNA replication: conformations at the fork.
Proc Natl Acad Sci U S A. 2001 Jul 17;98(15):8219-26. doi: 10.1073/pnas.111006998.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验