Suppr超能文献

细菌染色体上的DNA促旋酶和拓扑异构酶IV:喹诺酮诱导的DNA切割

DNA gyrase and topoisomerase IV on the bacterial chromosome: quinolone-induced DNA cleavage.

作者信息

Chen C R, Malik M, Snyder M, Drlica K

机构信息

Public Health Research Institute, New York, NY 10016, USA.

出版信息

J Mol Biol. 1996 May 17;258(4):627-37. doi: 10.1006/jmbi.1996.0274.

Abstract

DNA gyrase, the bacterial enzyme that supercoils DNA, is trapped on chromosomal DNA by the 4-quinolone compounds, as drug-gyrase complexes that contain DNA breaks. Examination of chromosomal DNA extracted from Escherichia coli indicated that bacteriostatic concentrations of oxolinic acid trap gyrase and block DNA synthesis without releasing broken DNA from gyrase-DNA complexes. Release, detected as free rotation of DNA in the presence of an intercalating dye, occurred only at high, bactericidal oxolinic acid concentrations. Release of DNA breaks and cell death were both blocked by chloramphenicol, an inhibitor of protein synthesis, suggesting that synthesis of additional protein activity is required to free the DNA ends. Ciprofloxacin, a more potent quinolone, released DNA breaks and killed cells even in the presence of chloramphenicol. It is proposed that this second, chloramphenicol-insensitive mode for release of DNA breaks and cell killing arises from dissociation of gyrase subunits. Ciprofloxacin also killed a gyrase (gyrA) mutant resistant to the prototype of quinolone, nalidixic acid, and created complexes on DNA detected by DNA fragmentation. This lethal effect of ciprofloxacin was eliminated by additional mutations mapping in parC, one of the two genes encoding topoisomerase IV. Thus, the fluoroquinolone compounds have two intracellular targets. In the absence of the gyrA mutation, the parC (CipR) allele did not by itself confer resistance to ciprofloxacin, indicating that gyrase is the major quinolone target in E. coli. These findings provide a molecular explanation for quinolone action in bacteria and a new way to study topoisomerase IV-chromosome interactions.

摘要

DNA 回旋酶是一种使 DNA 超螺旋化的细菌酶,它会被 4 - 喹诺酮类化合物捕获在染色体 DNA 上,形成含有 DNA 断裂的药物 - 回旋酶复合物。对从大肠杆菌中提取的染色体 DNA 的检测表明,抑菌浓度的恶喹酸会捕获回旋酶并阻断 DNA 合成,且不会从回旋酶 - DNA 复合物中释放断裂的 DNA。只有在高浓度的杀菌性恶喹酸存在时,才会出现如在嵌入染料存在下 DNA 自由旋转所检测到的释放现象。DNA 断裂的释放和细胞死亡均被蛋白质合成抑制剂氯霉素所阻断,这表明需要合成额外的蛋白质活性才能释放 DNA 末端。环丙沙星是一种更有效的喹诺酮类药物,即使在存在氯霉素的情况下也能释放 DNA 断裂并杀死细胞。有人提出,这种对氯霉素不敏感的释放 DNA 断裂和杀死细胞的第二种模式是由回旋酶亚基的解离引起的。环丙沙星还杀死了对喹诺酮类原型药物萘啶酸耐药的回旋酶(gyrA)突变体,并在通过 DNA 片段化检测的 DNA 上形成复合物。环丙沙星的这种致死作用通过在编码拓扑异构酶 IV 的两个基因之一 parC 中的额外突变而消除。因此,氟喹诺酮类化合物有两个细胞内靶点。在没有 gyrA 突变的情况下,parC(CipR)等位基因本身并不赋予对环丙沙星的抗性,这表明回旋酶是大肠杆菌中的主要喹诺酮靶点。这些发现为喹诺酮类药物在细菌中的作用提供了分子解释,并为研究拓扑异构酶 IV - 染色体相互作用提供了一种新方法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验