Suppr超能文献

酵母RNA加工的全局分析确定了RNase III的新靶点,并揭示了tRNA 5'端加工与tRNA剪接之间的联系。

Global analysis of yeast RNA processing identifies new targets of RNase III and uncovers a link between tRNA 5' end processing and tRNA splicing.

作者信息

Hiley Shawna L, Babak Tomas, Hughes Timothy R

机构信息

Banting and Best Department of Medical Research, University of Toronto 112 College Street, Toronto, ON M5G 1L6, Canada.

出版信息

Nucleic Acids Res. 2005 May 26;33(9):3048-56. doi: 10.1093/nar/gki608. Print 2005.

Abstract

We used a microarray containing probes that tile all known yeast noncoding RNAs (ncRNAs) to investigate RNA biogenesis on a global scale. The microarray verified a general loss of Box C/D snoRNAs in the TetO7-BCD1 mutant, which had previously been shown for only a handful of snoRNAs. We also monitored the accumulation of improperly processed flank sequences of pre-RNAs in strains depleted for known RNA nucleases, including RNase III, Dbr1p, Xrn1p, Rat1p and components of the exosome and RNase P complexes. Among the hundreds of aberrant RNA processing events detected, two novel substrates of Rnt1p (the RUF1 and RUF3 snoRNAs) were identified. We also identified a relationship between tRNA 5' end processing and tRNA splicing, processes that were previously thought to be independent. This analysis demonstrates the applicability of microarray technology to the study of global analysis of ncRNA synthesis and provides an extensive directory of processing events mediated by yeast ncRNA processing enzymes.

摘要

我们使用了一个包含能覆盖所有已知酵母非编码RNA(ncRNA)的探针的微阵列,以在全球范围内研究RNA生物合成。该微阵列证实了TetO7-BCD1突变体中Box C/D snoRNA普遍缺失,此前仅在少数几个snoRNA中观察到这种情况。我们还监测了在缺失已知RNA核酸酶(包括RNase III、Dbr1p、Xrn1p、Rat1p以及外切体和RNase P复合物的组分)的菌株中,前体RNA加工不当的侧翼序列的积累情况。在检测到的数百个异常RNA加工事件中,鉴定出了Rnt1p的两个新底物(RUF1和RUF3 snoRNA)。我们还确定了tRNA 5'端加工与tRNA剪接之间的关系,这两个过程以前被认为是相互独立的。该分析证明了微阵列技术在ncRNA合成全局分析研究中的适用性,并提供了由酵母ncRNA加工酶介导的加工事件的广泛目录。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f4b6/1140755/f6c9ae8c5814/gki608f1.jpg

相似文献

2
Yeast RNase III as a key processing enzyme in small nucleolar RNAs metabolism.
J Mol Biol. 1998 Dec 11;284(4):975-88. doi: 10.1006/jmbi.1998.2237.
3
Global identification of noncoding RNAs in Saccharomyces cerevisiae by modulating an essential RNA processing pathway.
Proc Natl Acad Sci U S A. 2006 Mar 14;103(11):4192-7. doi: 10.1073/pnas.0507669103. Epub 2006 Mar 6.
4
A conserved major groove antideterminant for Saccharomyces cerevisiae RNase III recognition.
Biochemistry. 2005 Mar 22;44(11):4181-7. doi: 10.1021/bi047483u.
5
Genome-wide prediction and analysis of yeast RNase III-dependent snoRNA processing signals.
Mol Cell Biol. 2005 Apr;25(8):2981-94. doi: 10.1128/MCB.25.8.2981-2994.2005.
6
Processing of a dicistronic small nucleolar RNA precursor by the RNA endonuclease Rnt1.
EMBO J. 1998 Jul 1;17(13):3726-37. doi: 10.1093/emboj/17.13.3726.
9
Sen34p depletion blocks tRNA splicing in vivo and delays rRNA processing.
Biochem Biophys Res Commun. 2005 Nov 11;337(1):89-94. doi: 10.1016/j.bbrc.2005.09.012.

引用本文的文献

2
A conserved Bcd1 interaction essential for box C/D snoRNP biogenesis.
J Biol Chem. 2019 Nov 29;294(48):18360-18371. doi: 10.1074/jbc.RA119.010222. Epub 2019 Sep 19.
3
Bcd1p controls RNA loading of the core protein Nop58 during C/D box snoRNP biogenesis.
RNA. 2019 Apr;25(4):496-506. doi: 10.1261/rna.067967.118. Epub 2019 Jan 30.
4
Precursors of tRNAs are stabilized by methylguanosine cap structures.
Nat Chem Biol. 2016 Aug;12(8):648-55. doi: 10.1038/nchembio.2117. Epub 2016 Jun 27.
5
Loss of the Yeast SR Protein Npl3 Alters Gene Expression Due to Transcription Readthrough.
PLoS Genet. 2015 Dec 22;11(12):e1005735. doi: 10.1371/journal.pgen.1005735. eCollection 2015 Dec.
6
A homolog of lariat-debranching enzyme modulates turnover of branched RNA.
RNA. 2014 Aug;20(8):1337-48. doi: 10.1261/rna.044602.114. Epub 2014 Jun 11.
7
tRNA 3' processing in yeast involves tRNase Z, Rex1, and Rrp6.
RNA. 2014 Jan;20(1):115-30. doi: 10.1261/rna.041467.113. Epub 2013 Nov 18.
8
Retrograde nuclear import of tRNA precursors is required for modified base biogenesis in yeast.
Proc Natl Acad Sci U S A. 2011 Jun 28;108(26):10502-7. doi: 10.1073/pnas.1105645108. Epub 2011 Jun 13.
9
Analysis of Escherichia coli RNase E and RNase III activity in vivo using tiling microarrays.
Nucleic Acids Res. 2011 Apr;39(8):3188-203. doi: 10.1093/nar/gkq1242. Epub 2010 Dec 11.
10
A systematic characterization of Cwc21, the yeast ortholog of the human spliceosomal protein SRm300.
RNA. 2009 Dec;15(12):2174-85. doi: 10.1261/rna.1790509. Epub 2009 Sep 29.

本文引用的文献

1
Detection and discovery of RNA modifications using microarrays.
Nucleic Acids Res. 2005 Jan 7;33(1):e2. doi: 10.1093/nar/gni002.
2
Genome-wide searching for pseudouridylation guide snoRNAs: analysis of the Saccharomyces cerevisiae genome.
Nucleic Acids Res. 2004 Aug 11;32(14):4281-96. doi: 10.1093/nar/gkh768. Print 2004.
3
Exploration of essential gene functions via titratable promoter alleles.
Cell. 2004 Jul 9;118(1):31-44. doi: 10.1016/j.cell.2004.06.013.
4
Polyadenylation of rRNA in Saccharomyces cerevisiae.
Proc Natl Acad Sci U S A. 2004 Jun 8;101(23):8581-6. doi: 10.1073/pnas.0402888101. Epub 2004 Jun 1.
5
The specificities of four yeast dihydrouridine synthases for cytoplasmic tRNAs.
J Biol Chem. 2004 Apr 23;279(17):17850-60. doi: 10.1074/jbc.M401221200. Epub 2004 Feb 16.
6
Nucleolar clustering of dispersed tRNA genes.
Science. 2003 Nov 21;302(5649):1399-401. doi: 10.1126/science.1089814.
7
Global analysis of protein localization in budding yeast.
Nature. 2003 Oct 16;425(6959):686-91. doi: 10.1038/nature02026.
8
Possibility of cytoplasmic pre-tRNA splicing: the yeast tRNA splicing endonuclease mainly localizes on the mitochondria.
Mol Biol Cell. 2003 Aug;14(8):3266-79. doi: 10.1091/mbc.e02-11-0757. Epub 2003 May 3.
9
Computational identification of non-coding RNAs in Saccharomyces cerevisiae by comparative genomics.
Nucleic Acids Res. 2003 Jul 15;31(14):4119-28. doi: 10.1093/nar/gkg438.
10
A panoramic view of yeast noncoding RNA processing.
Cell. 2003 Jun 27;113(7):919-33. doi: 10.1016/s0092-8674(03)00466-5.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验