Córdova Armando, Ibrahem Ismail, Casas Jesús, Sundén Henrik, Engqvist Magnus, Reyes Efraim
Department of Organic Chemistry, The Arrhenius Laboratory, Stockholm University, Sweden.
Chemistry. 2005 Aug 5;11(16):4772-84. doi: 10.1002/chem.200500139.
Hexose sugars play a fundamental role in vital biochemical processes and their biosynthesis is achieved through enzyme-catalyzed pathways. Herein we disclose the ability of amino acids to catalyze the asymmetric neogenesis of carbohydrates by sequential cross-aldol reactions. The amino acids mediate the asymmetric de novo synthesis of natural L- and D-hexoses and their analogues with excellent stereoselectivity in organic solvents. In some cases, the four new stereocenters are assembled with almost absolute stereocontrol. The unique feature of these results is that, when an amino acid is employed as the catalyst, a single reaction sequence can convert a protected glycol aldehyde into a hexose in one step. For example, proline and its derivatives catalyze the asymmetric neogenesis of allose with >99 % ee in one chemical manipulation. Furthermore, all amino acids tested catalyzed the asymmetric formation of natural sugars under prebiotic conditions, with alanine being the smallest catalyst. The inherent simplicity of this catalytic process suggests that a catalytic prebiotic "gluconeogenesis" may occur, in which amino acids transfer their stereochemical information to sugars. In addition, the amino acid catalyzed stereoselective sequential cross-aldol reactions were performed as a two-step procedure with different aldehydes as acceptors and nucleophiles. The employment of two different amino acids as catalysts for the iterative direct aldol reactions enabled the asymmetric synthesis of deoxysugars with >99 % ee. In addition, the direct amino acid catalyzed C(2)+C(2)+C(2) methodology is a new entry for the short, highly enantioselective de novo synthesis of carbohydrate derivatives, isotope-labeled sugars, and polyketide natural products. The one-pot asymmetric de novo syntheses of deoxy and polyketide carbohydrates involved a novel dynamic kinetic asymmetric transformation (DYKAT) mediated by an amino acid.
己糖在重要的生物化学过程中起着基础性作用,其生物合成是通过酶催化途径实现的。在此,我们揭示了氨基酸通过连续交叉羟醛反应催化碳水化合物不对称新生的能力。氨基酸在有机溶剂中以优异的立体选择性介导天然L-和D-己糖及其类似物的不对称从头合成。在某些情况下,四个新的立体中心几乎以绝对的立体控制进行组装。这些结果的独特之处在于,当使用氨基酸作为催化剂时,单一反应序列可以一步将受保护的乙醇醛转化为己糖。例如,脯氨酸及其衍生物在一次化学操作中催化阿洛糖的不对称新生,对映体过量值(ee)>99%。此外,所有测试的氨基酸在益生元条件下都催化天然糖的不对称形成,丙氨酸是最小的催化剂。这种催化过程固有的简单性表明可能发生催化性的益生元“糖异生”,其中氨基酸将其立体化学信息传递给糖。此外,氨基酸催化的立体选择性连续交叉羟醛反应作为两步程序进行,使用不同的醛作为受体和亲核试剂。使用两种不同的氨基酸作为迭代直接羟醛反应的催化剂能够不对称合成对映体过量值>99%的脱氧糖。此外,直接由氨基酸催化的C(2)+C(2)+C(2)方法是碳水化合物衍生物、同位素标记糖和聚酮天然产物短程、高对映选择性从头合成的新方法。脱氧和聚酮碳水化合物的一锅法不对称从头合成涉及由氨基酸介导的新型动态动力学不对称转化(DYKAT)。