Bolik Sarah, Rübhausen Michael, Binder Stephan, Schulz Benjamin, Perbandt Markus, Genov Nicolay, Erdmann Volker, Klussmann Sven, Betzel Christian
Institute of Applied Physics, University of Hamburg, Hamburg, Germany.
RNA. 2007 Nov;13(11):1877-80. doi: 10.1261/rna.564507. Epub 2007 Sep 5.
The homochirality of biomolecules is a prerequisite for the origin and evolution of terrestrial life. The unique selection of D-monosaccharides, in particular, D-ribose in RNA and D-deoxyribose in DNA, leads to the construction of proteins by L-amino acids. This points to the exclusive role of stereoselectivity in the most important physiological processes. So far, there is no experimental confirmation for the theoretical calculations of the energy differences between enantiomers used for the explanation of the stereoselection of biomolecules. Therefore, the question of why nature prefers one configuration over the other still lacks a definitive answer. Here, we present the first experimental evidence that the D-enantiomer of RNA has a different electronic structure compared to the corresponding L-enantiomer. When varying the incident photon energy of the ultraviolet Raman probe across 5 eV, D- and L-isomers of the RNA duplex with the sequence [r(CUGGGCGG).r(CCGCCUGG)] show differences in the intensity of the vibrational modes with energies of 124.0 meV to 210.8 meV. The intensity difference of these vibrational modes can be traced back to energy differences in the electronic levels of D- and L-RNA leading to the preferential stabilization of the naturally occurring D-configuration of RNA over the L-configuration.
生物分子的同手性是地球生命起源和进化的一个先决条件。特别是对D-单糖的独特选择,RNA中的D-核糖和DNA中的D-脱氧核糖,导致了由L-氨基酸构建蛋白质。这表明立体选择性在最重要的生理过程中具有独特作用。到目前为止,用于解释生物分子立体选择的对映体之间能量差异的理论计算还没有得到实验证实。因此,自然界为何偏爱一种构型而非另一种构型的问题仍然缺乏明确答案。在这里,我们提供了首个实验证据,即RNA的D-对映体与相应的L-对映体相比具有不同的电子结构。当将紫外拉曼探针的入射光子能量在5 eV范围内变化时,具有[r(CUGGGCGG).r(CCGCCUGG)]序列的RNA双链体的D-异构体和L-异构体在能量为124.0 meV至210.8 meV的振动模式强度上表现出差异。这些振动模式的强度差异可追溯到D-RNA和L-RNA电子能级的能量差异,从而导致RNA天然存在的D-构型比L-构型更优先稳定。