Suppr超能文献

在厌氧氮或碳限制恒化器培养中生长的酿酒酵母的饥饿反应。

Starvation response of Saccharomyces cerevisiae grown in anaerobic nitrogen- or carbon-limited chemostat cultures.

作者信息

Thomsson Elisabeth, Gustafsson Lena, Larsson Christer

机构信息

Department of Chemistry and Bioscience, Molecular Biotechnology, Lundberg Laboratory, Chalmers University of Technology, Box 462, SE-405 30 Gothenburg, Sweden.

出版信息

Appl Environ Microbiol. 2005 Jun;71(6):3007-13. doi: 10.1128/AEM.71.6.3007-3013.2005.

Abstract

Anaerobic starvation conditions are frequent in industrial fermentation and can affect the performance of the cells. In this study, the anaerobic carbon or nitrogen starvation response of Saccharomyces cerevisiae was investigated for cells grown in anaerobic carbon or nitrogen-limited chemostat cultures at a dilution rate of 0.1 h(-1) at pH 3.25 or 5. Lactic or benzoic acid was present in the growth medium at different concentrations, resulting in 16 different growth conditions. At steady state, cells were harvested and then starved for either carbon or nitrogen for 24 h under anaerobic conditions. We measured fermentative capacity, glucose uptake capacity, intracellular ATP content, and reserve carbohydrates and found that the carbon, but not the nitrogen, starvation response was dependent upon the previous growth conditions. All cells subjected to nitrogen starvation retained a large portion of their initial fermentative capacity, independently of previous growth conditions. However, nitrogen-limited cells that were starved for carbon lost almost all their fermentative capacity, while carbon-limited cells managed to preserve a larger portion of their fermentative capacity during carbon starvation. There was a positive correlation between the amount of glycogen before carbon starvation and the fermentative capacity and ATP content of the cells after carbon starvation. Fermentative capacity and glucose uptake capacity were not correlated under any of the conditions tested. Thus, the successful adaptation to sudden carbon starvation requires energy and, under anaerobic conditions, fermentable endogenous resources. In an industrial setting, carbon starvation in anaerobic fermentations should be avoided to maintain a productive yeast population.

摘要

厌氧饥饿条件在工业发酵中很常见,并且会影响细胞的性能。在本研究中,对在pH 3.25或5、稀释率为0.1 h⁻¹的厌氧碳或氮限制恒化器培养中生长的酿酒酵母细胞的厌氧碳或氮饥饿反应进行了研究。生长培养基中存在不同浓度的乳酸或苯甲酸,从而产生16种不同的生长条件。在稳态下,收获细胞,然后在厌氧条件下使其碳或氮饥饿24小时。我们测量了发酵能力、葡萄糖摄取能力、细胞内ATP含量和储备碳水化合物,发现碳饥饿反应而非氮饥饿反应取决于先前的生长条件。所有经历氮饥饿的细胞都保留了其初始发酵能力的很大一部分,与先前的生长条件无关。然而,经历碳饥饿的氮限制细胞几乎丧失了所有发酵能力,而碳限制细胞在碳饥饿期间设法保留了较大部分的发酵能力。碳饥饿前糖原的量与碳饥饿后细胞的发酵能力和ATP含量之间存在正相关。在任何测试条件下,发酵能力和葡萄糖摄取能力均不相关。因此,成功适应突然的碳饥饿需要能量,并且在厌氧条件下需要可发酵的内源性资源。在工业环境中,应避免厌氧发酵中的碳饥饿,以维持高产的酵母群体。

相似文献

1
Starvation response of Saccharomyces cerevisiae grown in anaerobic nitrogen- or carbon-limited chemostat cultures.
Appl Environ Microbiol. 2005 Jun;71(6):3007-13. doi: 10.1128/AEM.71.6.3007-3013.2005.
2
Carbon starvation can induce energy deprivation and loss of fermentative capacity in Saccharomyces cerevisiae.
Appl Environ Microbiol. 2003 Jun;69(6):3251-7. doi: 10.1128/AEM.69.6.3251-3257.2003.
3
The effect of lactic acid on anaerobic carbon or nitrogen limited chemostat cultures of Saccharomyces cerevisiae.
Appl Microbiol Biotechnol. 2006 Jul;71(4):533-42. doi: 10.1007/s00253-005-0195-3. Epub 2005 Oct 27.
6
Effect of nutrient starvation on the cellular composition and metabolic capacity of Saccharomyces cerevisiae.
Appl Environ Microbiol. 2007 Aug;73(15):4839-48. doi: 10.1128/AEM.00425-07. Epub 2007 Jun 1.
7
Time-dependent regulation of yeast glycolysis upon nitrogen starvation depends on cell history.
IET Syst Biol. 2010 Mar;4(2):157-68. doi: 10.1049/iet-syb.2009.0025.
10
Quantitative Physiology of Non-Energy-Limited Retentostat Cultures of Saccharomyces cerevisiae at Near-Zero Specific Growth Rates.
Appl Environ Microbiol. 2019 Oct 1;85(20). doi: 10.1128/AEM.01161-19. Print 2019 Oct 15.

引用本文的文献

1
D-xylose accelerated death of pentose metabolizing Saccharomyces cerevisiae.
Biotechnol Biofuels Bioprod. 2023 Apr 17;16(1):67. doi: 10.1186/s13068-023-02320-4.
2
The Monod Model Is Insufficient To Explain Biomass Growth in Nitrogen-Limited Yeast Fermentation.
Appl Environ Microbiol. 2021 Sep 28;87(20):e0108421. doi: 10.1128/AEM.01084-21. Epub 2021 Aug 4.
3
Cellular Control of Viscosity Counters Changes in Temperature and Energy Availability.
Cell. 2020 Dec 10;183(6):1572-1585.e16. doi: 10.1016/j.cell.2020.10.017. Epub 2020 Nov 5.
4
Copy Number Variation in Fungi and Its Implications for Wine Yeast Genetic Diversity and Adaptation.
Front Microbiol. 2018 Feb 22;9:288. doi: 10.3389/fmicb.2018.00288. eCollection 2018.
5
pH regulation in glycosomes of procyclic form .
J Biol Chem. 2017 May 12;292(19):7795-7805. doi: 10.1074/jbc.M117.784173. Epub 2017 Mar 27.
7
Unique properties of the Mtr4p-poly(A) complex suggest a role in substrate targeting.
Biochemistry. 2010 Dec 14;49(49):10357-70. doi: 10.1021/bi101518x. Epub 2010 Nov 19.
9
Effect of nutrient starvation on the cellular composition and metabolic capacity of Saccharomyces cerevisiae.
Appl Environ Microbiol. 2007 Aug;73(15):4839-48. doi: 10.1128/AEM.00425-07. Epub 2007 Jun 1.
10
Transcriptional response of Saccharomyces cerevisiae to different nitrogen concentrations during alcoholic fermentation.
Appl Environ Microbiol. 2007 May;73(9):3049-60. doi: 10.1128/AEM.02754-06. Epub 2007 Mar 2.

本文引用的文献

1
Protein measurement with the Folin phenol reagent.
J Biol Chem. 1951 Nov;193(1):265-75.
2
Carbon starvation can induce energy deprivation and loss of fermentative capacity in Saccharomyces cerevisiae.
Appl Environ Microbiol. 2003 Jun;69(6):3251-7. doi: 10.1128/AEM.69.6.3251-3257.2003.
4
Osmotic stress signaling and osmoadaptation in yeasts.
Microbiol Mol Biol Rev. 2002 Jun;66(2):300-72. doi: 10.1128/MMBR.66.2.300-372.2002.
7
Effects of acetic acid and lactic acid on the growth of Saccharomyces cerevisiae in a minimal medium.
J Ind Microbiol Biotechnol. 2001 Mar;26(3):171-7. doi: 10.1038/sj.jim.7000090.
8
The importance of ATP as a regulator of glycolytic flux in Saccharomyces cerevisiae.
Yeast. 2000 Jun 30;16(9):797-809. doi: 10.1002/1097-0061(20000630)16:9<797::AID-YEA553>3.0.CO;2-5.
9
Trehalose reserve in Saccharomyces cerevisiae: phenomenon of transport, accumulation and role in cell viability.
Int J Food Microbiol. 2000 Apr 10;55(1-3):33-40. doi: 10.1016/s0168-1605(00)00210-5.
10
Glucose starvation induces a drastic reduction in the rates of both transcription and degradation of mRNA in yeast.
Biochim Biophys Acta. 2000 Apr 25;1491(1-3):37-48. doi: 10.1016/s0167-4781(00)00016-6.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验