Gresh Nohad, Piquemal Jean-Philip, Krauss Morris
Laboratoire de Pharmacochimie Moléculaire et Cellulaire, FRE 2718 CNRS, IFR Biomédicale, 45, Rue des Saints-Pères, 75006, Paris, France.
J Comput Chem. 2005 Aug;26(11):1113-30. doi: 10.1002/jcc.20244.
We present refinements of the SIBFA molecular mechanics procedure to represent the intermolecular interaction energies of Zn(II). The two first-order contributions, electrostatic (E(MTP)), and short-range repulsion (E(rep)), are refined following the recent developments due to Piquemal et al. (Piquemal et al. J Phys Chem A 2003, 107, 9800; and Piquemal et al., submitted). Thus, E(MTP) is augmented with a penetration component, E(pen), which accounts for the effects of reduction in electronic density of a given molecular fragment sensed by another interacting fragment upon mutual overlap. E(pen) is fit in a limited number of selected Zn(II)-mono-ligated complexes so that the sum of E(MTP) and E(pen) reproduces the Coulomb contribution E(c) from an ab initio Hartree-Fock energy decomposition procedure. Denoting by S, the overlap matrix between localized orbitals on the interacting monomers, and by R, the distance between their centroids, E(rep) is expressed by a S(2)/R term now augmented with an S(2)/R(2) one. It is calibrated in selected monoligated Zn(II) complexes to fit the corresponding exchange repulsion E(exch) from ab initio energy decomposition, and no longer as previously the difference between (E(c) + E(exch)) and E(MTP). Along with the reformulation of the first-order contributions, a limited recalibration of the second-order contributions was carried out. As in our original formulation (Gresh, J Comput Chem 1995, 16, 856), the Zn(II) parameters for each energy contribution were calibrated to reproduce the radial behavior of its ab initio HF counterpart in monoligated complexes with N, O, and S ligands. The SIBFA procedure was subsequently validated by comparisons with parallel ab initio computations on several Zn(II) polyligated complexes, including binuclear Zn(II) complexes as in models for the Gal4 and beta-lactamase metalloproteins. The largest relative error with respect to the RVS computations is 3%, and the ordering in relative energies of competing structures reproduced even though the absolute numerical values of the ab initio interaction energies can be as large as 1220 kcal/mol. A term-to-term identification of the SIBFA contributions to their ab initio counterparts remained possible even for the largest sized complexes.
我们提出了SIBFA分子力学程序的改进方法,以表示Zn(II)的分子间相互作用能。根据Piquemal等人的最新研究进展(Piquemal等人,《物理化学杂志A》,2003年,107卷,9800页;以及Piquemal等人,已提交),对两个一级贡献项,即静电作用(E(MTP))和短程排斥作用(E(rep))进行了改进。因此,E(MTP)增加了一个穿透分量E(pen),它考虑了一个相互作用片段在相互重叠时感知到的另一个给定分子片段电子密度降低的影响。E(pen)在有限数量的选定Zn(II)单配位配合物中进行拟合,以使E(MTP)和E(pen)的总和重现从头算Hartree-Fock能量分解程序中的库仑贡献E(c)。用S表示相互作用单体上定域轨道之间的重叠矩阵,用R表示它们质心之间的距离,E(rep)现在由一个S(2)/R项表示,该项现在增加了一个S(2)/R(2)项。它在选定的单配位Zn(II)配合物中进行校准,以拟合从头算能量分解中的相应交换排斥能E(exch),而不再像以前那样是(E(c) + E(exch))与E(MTP)之间的差值。除了对一级贡献项进行重新表述外,还对二级贡献项进行了有限的重新校准。与我们原来的公式(Gresh,《计算化学杂志》,1995年,16卷,856页)一样,对每个能量贡献的Zn(II)参数进行校准,以重现其在与N、O和S配体形成的单配位配合物中从头算HF对应物的径向行为。随后,通过与对几种Zn(II)多配位配合物(包括Gal4和β-内酰胺酶金属蛋白模型中的双核Zn(II)配合物)进行的平行从头算计算进行比较,验证了SIBFA程序。相对于RVS计算的最大相对误差为3%,并且即使从头算相互作用能的绝对值高达1220 kcal/mol,也能重现竞争结构相对能量的排序。即使对于最大尺寸的配合物,也仍然可以逐一确定SIBFA贡献与其从头算对应物之间的关系。