Suppr超能文献

相似文献

1
A Transferable Non-bonded Pairwise Force Field to Model Zinc Interactions in Metalloproteins.
J Chem Theory Comput. 2011 Feb 8;7(2):433-443. doi: 10.1021/ct100525r.
3
Quantum effects in cation interactions with first and second coordination shell ligands in metalloproteins.
J Chem Theory Comput. 2015 Oct 13;11(10):4992-5001. doi: 10.1021/acs.jctc.5b00524. Epub 2015 Oct 5.
4
Thiol versus hydroxamate as zinc binding group in HDAC inhibition: An ab initio QM/MM molecular dynamics study.
J Comput Chem. 2015 Nov 15;36(30):2228-35. doi: 10.1002/jcc.24203. Epub 2015 Oct 9.
5
A modified bonded model approach for molecular dynamics simulations of New Delhi Metallo-β-lactamase.
J Mol Graph Model. 2023 Jun;121:108431. doi: 10.1016/j.jmgm.2023.108431. Epub 2023 Feb 17.
6
Multiscale Workflow for Modeling Ligand Complexes of Zinc Metalloproteins.
J Chem Inf Model. 2021 Nov 22;61(11):5658-5672. doi: 10.1021/acs.jcim.1c01109. Epub 2021 Nov 8.
9
Systematic Derivation of AMBER Force Field Parameters Applicable to Zinc-Containing Systems.
J Chem Theory Comput. 2010 Jun 8;6(6):1852-70. doi: 10.1021/ct900454q. Epub 2010 May 10.

引用本文的文献

1
Automatically Constructed Neural Network Potentials for Molecular Dynamics Simulation of Zinc Proteins.
Front Chem. 2021 Jun 18;9:692200. doi: 10.3389/fchem.2021.692200. eCollection 2021.
3
Prediction of Protein-compound Binding Energies from Known Activity Data: Docking-score-based Method and its Applications.
Mol Inform. 2018 Jul;37(6-7):e1700120. doi: 10.1002/minf.201700120. Epub 2018 Feb 14.
4
Force Field Parametrization of Metal Ions from Statistical Learning Techniques.
J Chem Theory Comput. 2018 Jan 9;14(1):255-273. doi: 10.1021/acs.jctc.7b00779. Epub 2017 Dec 6.
5
Metal Ion Modeling Using Classical Mechanics.
Chem Rev. 2017 Feb 8;117(3):1564-1686. doi: 10.1021/acs.chemrev.6b00440. Epub 2017 Jan 3.
6
Thiol versus hydroxamate as zinc binding group in HDAC inhibition: An ab initio QM/MM molecular dynamics study.
J Comput Chem. 2015 Nov 15;36(30):2228-35. doi: 10.1002/jcc.24203. Epub 2015 Oct 9.
7
Development and Application of a Nonbonded Cu(2+) Model That Includes the Jahn-Teller Effect.
J Phys Chem Lett. 2015 Jul 2;6(13):2657-62. doi: 10.1021/acs.jpclett.5b01122.
8
Parametrization of DFTB3/3OB for magnesium and zinc for chemical and biological applications.
J Phys Chem B. 2015 Jan 22;119(3):1062-82. doi: 10.1021/jp506557r. Epub 2014 Sep 16.
9
AutoDock4(Zn): an improved AutoDock force field for small-molecule docking to zinc metalloproteins.
J Chem Inf Model. 2014 Aug 25;54(8):2371-9. doi: 10.1021/ci500209e. Epub 2014 Jul 18.
10
Taking into Account the Ion-induced Dipole Interaction in the Nonbonded Model of Ions.
J Chem Theory Comput. 2014 Jan 14;10(1):289-297. doi: 10.1021/ct400751u.

本文引用的文献

1
Tinker 8: Software Tools for Molecular Design.
J Chem Theory Comput. 2018 Oct 9;14(10):5273-5289. doi: 10.1021/acs.jctc.8b00529. Epub 2018 Sep 19.
5
Systematic Derivation of AMBER Force Field Parameters Applicable to Zinc-Containing Systems.
J Chem Theory Comput. 2010 Jun 8;6(6):1852-70. doi: 10.1021/ct900454q. Epub 2010 May 10.
6
Polarizable molecular dynamics simulation of Zn(II) in water using the AMOEBA force field.
J Chem Theory Comput. 2010 Jul 13;6(7):2059-2070. doi: 10.1021/ct100091j.
7
Structural Survey of Zinc Containing Proteins and the Development of the Zinc AMBER Force Field (ZAFF).
J Chem Theory Comput. 2010 Sep 14;6(9):2935-2947. doi: 10.1021/ct1002626.
8
A proton-shuttle reaction mechanism for histone deacetylase 8 and the catalytic role of metal ions.
J Am Chem Soc. 2010 Jul 14;132(27):9471-9. doi: 10.1021/ja103932d.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验