Wu Ruibo, Lu Zhenyu, Cao Zexing, Zhang Yingkai
Department of Chemistry, New York University, New York, NY 10003 USA.
J Chem Theory Comput. 2011 Feb 8;7(2):433-443. doi: 10.1021/ct100525r.
Herein we introduce a novel practical strategy to overcome the well-known challenge of modeling the divalent zinc cation in metalloproteins. The main idea is to design short-long effective functions (SLEF) to describe charge interactions between the zinc ion and all other atoms. This SLEF approach has the following desired features: (1). It is pairwise, additive and compatible with widely used atomic pair-wise force fields for modeling biomolecules; (2). It only changes interactions between the zinc ion and other atoms, and does not affect force field parameters that model other interactions in the system; (3). It is a non-bonded model that is inherently capable to describe different zinc ligands and coordination modes. By optimizing two SLEF parameters as well as zinc vdW parameters through force matching based on Born-Oppenheimer ab initio QM/MM molecular dynamics simulations, we have successfully developed the first SLEF force field (SLEF1) to describe zinc interactions. Extensive molecular dynamics simulations of seven zinc enzyme systems with different coordination ligands and distinct chelation modes (4-,5-,6-fold), including the binuclear zinc active site, yielded zinc coordination numbers and binding distances in good agreement with the corresponding crystal structures as well as ab initio QM/MM MD results. This not only demonstrates the transferability and adequacy of the new SLEF1 force field in describing a variety of zinc proteins, but also indicates that this novel SLEF approach is a promising direction to explore for improving force field description of metal ion interactions.
在此,我们介绍一种新颖的实用策略,以克服在金属蛋白中对二价锌阳离子进行建模这一众所周知的挑战。主要思路是设计长短有效函数(SLEF)来描述锌离子与所有其他原子之间的电荷相互作用。这种SLEF方法具有以下理想特性:(1)。它是成对的、可加的,并且与用于生物分子建模的广泛使用的原子对力场兼容;(2)。它仅改变锌离子与其他原子之间的相互作用,而不影响对系统中其他相互作用进行建模的力场参数;(3)。它是一种非键合模型,本质上能够描述不同的锌配体和配位模式。通过基于玻恩 - 奥本海默从头算量子力学/分子力学分子动力学模拟,通过力匹配优化两个SLEF参数以及锌的范德华参数,我们成功开发了第一个用于描述锌相互作用的SLEF力场(SLEF1)。对七个具有不同配位配体和不同螯合模式(4 -、5 -、6 - 重)的锌酶系统进行了广泛的分子动力学模拟,包括双核锌活性位点,得到的锌配位数和结合距离与相应的晶体结构以及从头算量子力学/分子力学分子动力学结果高度一致。这不仅证明了新的SLEF1力场在描述各种锌蛋白方面的可转移性和适用性,还表明这种新颖的SLEF方法是探索改进金属离子相互作用的力场描述的一个有前途的方向。