Suppr超能文献

等温滴定量热法中的统计误差:基于广义最小二乘法的方差函数估计

Statistical error in isothermal titration calorimetry: variance function estimation from generalized least squares.

作者信息

Tellinghuisen Joel

机构信息

Department of Chemistry, Vanderbilt University, Nashville, TN 37235, USA.

出版信息

Anal Biochem. 2005 Aug 1;343(1):106-15. doi: 10.1016/j.ab.2005.04.026.

Abstract

The method of generalized least squares (GLS) is used to assess the variance function for isothermal titration calorimetry (ITC) data collected for the 1:1 complexation of Ba(2+) with 18-crown-6 ether. In the GLS method, the least squares (LS) residuals from the data fit are themselves fitted to a variance function, with iterative adjustment of the weighting function in the data analysis to produce consistency. The data are treated in a pooled fashion, providing 321 fitted residuals from 35 data sets in the final analysis. Heteroscedasticity (nonconstant variance) is clearly indicated. Data error terms proportional to q(i) and q(i)/v are well defined statistically, where q(i) is the heat from the ith injection of titrant and v is the injected volume. The statistical significance of the variance function parameters is confirmed through Monte Carlo calculations that mimic the actual data set. For the data in question, which fall mostly in the range of q(i)=100-2000 microcal, the contributions to the data variance from the terms in q(i)(2) typically exceed the background constant term for q(i)>300 microcal and v<10 microl. Conversely, this means that in reactions with q(i) much less than this, heteroscedasticity is not a significant problem. Accordingly, in such cases the standard unweighted fitting procedures provide reliable results for the key parameters, K and DeltaH(degrees) and their statistical errors. These results also support an important earlier finding: in most ITC work on 1:1 binding processes, the optimal number of injections is 7-10, which is a factor of 3 smaller than the current norm. For high-q reactions, where weighting is needed for optimal LS analysis, tips are given for using the weighting option in the commercial software commonly employed to process ITC data.

摘要

广义最小二乘法(GLS)用于评估等温滴定量热法(ITC)收集的数据的方差函数,这些数据是关于Ba(2+)与18-冠-6醚1:1络合反应的。在GLS方法中,数据拟合得到的最小二乘(LS)残差本身被拟合到一个方差函数,在数据分析中对加权函数进行迭代调整以产生一致性。数据以合并的方式处理,最终分析中从35个数据集中得到321个拟合残差。明显存在异方差性(方差非恒定)。数据误差项与q(i)和q(i)/v成正比,在统计上有明确的定义,其中q(i)是第i次滴定剂注入产生的热量,v是注入体积。通过模拟实际数据集的蒙特卡罗计算,证实了方差函数参数的统计显著性。对于所讨论的数据,其大多落在q(i)=100 - 2000微卡的范围内,当q(i)>300微卡且v<10微升时,q(i)(2)项对数据方差的贡献通常超过背景常数项。相反,这意味着在q(i)远小于此值的反应中,异方差性不是一个显著问题。因此,在这种情况下,标准的未加权拟合程序为关键参数K和ΔH(°)及其统计误差提供了可靠的结果。这些结果也支持了一个重要的早期发现:在大多数关于1:1结合过程的ITC工作中,最佳注入次数是7 - 10次,这比当前的标准少三分之一。对于需要加权以进行最佳LS分析的高q反应,给出了在处理ITC数据常用的商业软件中使用加权选项的提示。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验