Ramos-González María Isabel, Campos María Jesús, Ramos Juan L
Department of Plant Biochemistry and Molecular and Cell Biology, Estación Experimental de Zaidín, CSIC, Profesor Albareda, 1, Granada 18008, Spain.
J Bacteriol. 2005 Jun;187(12):4033-41. doi: 10.1128/JB.187.12.4033-4041.2005.
Pseudomonas putida KT2440, a paradigm organism in biodegradation and a good competitive colonizer of the maize rhizosphere, was the subject of studies undertaken to establish the genetic determinants important for its rhizospheric lifestyle. By using in vivo expression technology (IVET) to positively select single cell survival, we identified 28 rap genes (root-activated promoters) preferentially expressed in the maize rhizosphere. The IVET system had two components: a mutant affected in aspartate-beta-semialdehyde dehydrogenase (asd), which was unable to survive in the rhizosphere, and plasmid pOR1, which carries a promoter-less asd gene. pOR1-borne transcriptional fusions of the rap promoters to the essential gene asd, which were integrated into the chromosome at the original position of the corresponding rap gene, were active and allowed growth of the asd strain in the rhizosphere. The fact that five of the rap genes identified in the course of this work had been formerly characterized as being related to root colonization reinforced the IVET approach. Up to nine rap genes encoded proteins either of unknown function or that had been assigned an unspecific role based on conservation of the protein family domains. Rhizosphere-induced fusions included genes with probable functions in the cell envelope, chemotaxis and motility, transport, secretion, DNA metabolism and defense mechanism, regulation, energy metabolism, stress, detoxification, and protein synthesis.
恶臭假单胞菌KT2440是生物降解领域的典型生物,也是玉米根际良好的竞争性定殖菌,是为确定对其根际生活方式重要的遗传决定因素而开展研究的对象。通过使用体内表达技术(IVET)对单细胞存活进行正向选择,我们鉴定出28个在玉米根际优先表达的rap基因(根激活启动子)。IVET系统有两个组成部分:一个天冬氨酸-β-半醛脱氢酶(asd)功能缺失的突变体,它无法在根际存活;以及质粒pOR1,它携带一个无启动子的asd基因。将rap启动子与必需基因asd的pOR1介导的转录融合体整合到相应rap基因的原始位置的染色体上,这些融合体具有活性,并允许asd菌株在根际生长。在这项工作过程中鉴定出的五个rap基因先前已被表征为与根定殖有关,这一事实强化了IVET方法。多达九个rap基因编码的蛋白质功能未知,或者基于蛋白质家族结构域的保守性被赋予了非特异性作用。根际诱导的融合基因包括可能在细胞壁、趋化性和运动性、转运、分泌、DNA代谢和防御机制、调控、能量代谢、应激、解毒和蛋白质合成中发挥作用的基因。