Department of Plant Pathology, Entomology, and Microbiology, Iowa State University, Ames, Iowa 50011, United States.
Ames National Laboratory, Ames, Iowa 50011, United States.
ACS Synth Biol. 2024 Sep 20;13(9):2912-2925. doi: 10.1021/acssynbio.4c00312. Epub 2024 Aug 20.
KT2440 (formerly ) has become both a well-known chassis organism for synthetic biology and a model organism for rhizosphere colonization. Here, we describe a CRISPR interference (CRISPRi) system in KT2440 for exploring microbe-microbe interactions in the rhizosphere and for use in industrial systems. Our CRISPRi system features three different promoter systems (XylS/, LacI/, and AraC/) and a dCas9 codon-optimized for Pseudomonads, all located on a mini-Tn7-based transposon that inserts into a neutral site in the genome. It also includes a suite of pSEVA-derived sgRNA expression vectors, where the expression is driven by synthetic promoters varying in strength. We compare the three promoter systems in terms of how well they can precisely modulate gene expression, and we discuss the impact of environmental factors, such as media choice, on the success of CRISPRi. We demonstrate that CRISPRi is functional in bacteria colonizing the rhizosphere, with repression of essential genes leading to a 10-100-fold reduction in cells per root. Finally, we show that CRISPRi can be used to modulate microbe-microbe interactions. When the gene is repressed and is unable to produce pyoverdine, it loses its ability to inhibit other microbes Moreover, our design is amendable for future CRISPRi-seq studies and in multispecies microbial communities, with the different promoter systems providing a means to control the level of gene expression in many different environments.
KT2440(以前称为)已成为合成生物学中众所周知的底盘生物,也是根际定殖的模式生物。在这里,我们描述了 KT2440 中的 CRISPR 干扰(CRISPRi)系统,用于探索根际中的微生物-微生物相互作用,并用于工业系统。我们的 CRISPRi 系统具有三个不同的启动子系统(XylS/、LacI/和 AraC/)和一个针对假单胞菌优化的 dCas9 密码子,它们都位于基于 mini-Tn7 的转座子上,该转座子插入基因组中的中性位点。它还包括一套源自 pSEVA 的 sgRNA 表达载体,其中表达由强度不同的合成启动子驱动。我们比较了三个启动子系统在精确调节基因表达方面的表现,并讨论了环境因素(如培养基选择)对 CRISPRi 成功的影响。我们证明 CRISPRi 在定殖根际的细菌中是有效的,必需基因的抑制导致根中细胞减少 10-100 倍。最后,我们表明 CRISPRi 可用于调节微生物-微生物相互作用。当基因 被抑制且 无法产生绿脓菌素时,它失去抑制其他微生物的能力。此外,我们的设计适用于未来的 CRISPRi-seq 研究和多物种微生物群落,不同的启动子系统为在许多不同环境中控制基因表达水平提供了一种手段。