Suppr超能文献

果蝇悬停飞行的空气动力学

The aerodynamics of hovering flight in Drosophila.

作者信息

Fry Steven N, Sayaman Rosalyn, Dickinson Michael H

机构信息

Institute of Neuroinformatics, University/ETH Zürich, Switzerland.

出版信息

J Exp Biol. 2005 Jun;208(Pt 12):2303-18. doi: 10.1242/jeb.01612.

Abstract

Using 3D infrared high-speed video, we captured the continuous wing and body kinematics of free-flying fruit flies, Drosophila melanogaster, during hovering and slow forward flight. We then 'replayed' the wing kinematics on a dynamically scaled robotic model to measure the aerodynamic forces produced by the wings. Hovering animals generate a U-shaped wing trajectory, in which large drag forces during a downward plunge at the start of each stroke create peak vertical forces. Quasi-steady mechanisms could account for nearly all of the mean measured force required to hover, although temporal discrepancies between instantaneous measured forces and model predictions indicate that unsteady mechanisms also play a significant role. We analyzed the requirements for hovering from an analysis of the time history of forces and moments in all six degrees of freedom. The wing kinematics necessary to generate sufficient lift are highly constrained by the requirement to balance thrust and pitch torque over the stroke cycle. We also compare the wing motion and aerodynamic forces of free and tethered flies. Tethering causes a strong distortion of the stroke pattern that results in a reduction of translational forces and a prominent nose-down pitch moment. The stereotyped distortion under tethered conditions is most likely due to a disruption of sensory feedback. Finally, we calculated flight power based directly on the measurements of wing motion and aerodynamic forces, which yielded a higher estimate of muscle power during free hovering flight than prior estimates based on time-averaged parameters. This discrepancy is mostly due to a two- to threefold underestimate of the mean profile drag coefficient in prior studies. We also compared our values with the predictions of the same time-averaged models using more accurate kinematic and aerodynamic input parameters based on our high-speed videography measurements. In this case, the time-averaged models tended to overestimate flight costs.

摘要

我们使用3D红外高速视频,捕捉了自由飞行的黑腹果蝇在悬停和缓慢向前飞行过程中翅膀和身体的连续运动学数据。然后,我们在一个动态缩放的机器人模型上“回放”翅膀运动学数据,以测量翅膀产生的气动力。悬停的动物会产生一个U形的翅膀轨迹,在每个冲程开始时向下俯冲的过程中,较大的阻力会产生峰值垂直力。准稳态机制几乎可以解释悬停所需的所有平均测量力,尽管瞬时测量力与模型预测之间的时间差异表明非稳态机制也起着重要作用。我们通过分析所有六个自由度上的力和力矩随时间的变化历史,分析了悬停的要求。在冲程周期内,为了平衡推力和俯仰扭矩,产生足够升力所需的翅膀运动学受到高度限制。我们还比较了自由飞行和系留飞行果蝇的翅膀运动和气动力。系留会导致冲程模式的强烈扭曲,从而导致平移力的减小和明显的机头向下俯仰力矩。系留条件下的刻板扭曲很可能是由于感觉反馈的中断。最后,我们直接根据翅膀运动和气动力的测量结果计算飞行功率,这得出了自由悬停飞行期间肌肉功率的估计值,比基于时间平均参数的先前估计值更高。这种差异主要是由于先前研究中平均剖面阻力系数被低估了两到三倍。我们还将我们的值与使用基于高速摄像测量的更准确运动学和空气动力学输入参数的相同时间平均模型的预测值进行了比较。在这种情况下,时间平均模型往往高估了飞行成本。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验