Yu Angela J, Dayan Peter
Gatsby Computational Neuroscience Unit, London, United Kingdom.
Neuron. 2005 May 19;46(4):681-92. doi: 10.1016/j.neuron.2005.04.026.
Uncertainty in various forms plagues our interactions with the environment. In a Bayesian statistical framework, optimal inference and prediction, based on unreliable observations in changing contexts, require the representation and manipulation of different forms of uncertainty. We propose that the neuromodulators acetylcholine and norepinephrine play a major role in the brain's implementation of these uncertainty computations. Acetylcholine signals expected uncertainty, coming from known unreliability of predictive cues within a context. Norepinephrine signals unexpected uncertainty, as when unsignaled context switches produce strongly unexpected observations. These uncertainty signals interact to enable optimal inference and learning in noisy and changeable environments. This formulation is consistent with a wealth of physiological, pharmacological, and behavioral data implicating acetylcholine and norepinephrine in specific aspects of a range of cognitive processes. Moreover, the model suggests a class of attentional cueing tasks that involve both neuromodulators and shows how their interactions may be part-antagonistic, part-synergistic.
各种形式的不确定性困扰着我们与环境的交互。在贝叶斯统计框架中,基于不断变化的环境中不可靠的观测进行最优推理和预测,需要对不同形式的不确定性进行表示和处理。我们提出,神经调质乙酰胆碱和去甲肾上腺素在大脑执行这些不确定性计算中起主要作用。乙酰胆碱发出预期不确定性的信号,这种不确定性源于特定情境中预测线索已知的不可靠性。去甲肾上腺素发出意外不确定性的信号,比如当未发出信号的情境转换产生强烈意外的观测结果时。这些不确定性信号相互作用,以便在嘈杂多变的环境中实现最优推理和学习。这一表述与大量生理、药理和行为数据相一致,这些数据表明乙酰胆碱和去甲肾上腺素参与了一系列认知过程的特定方面。此外,该模型提出了一类涉及这两种神经调质的注意力提示任务,并展示了它们的相互作用如何可能部分是拮抗的,部分是协同的。