Suppr超能文献

使用微型递归神经网络发现认知策略。

Discovering cognitive strategies with tiny recurrent neural networks.

作者信息

Ji-An Li, Benna Marcus K, Mattar Marcelo G

机构信息

Department of Neurobiology, School of Biological Sciences, University of California San Diego, La Jolla, CA, USA.

Department of Psychology, New York University, New York, NY, USA.

出版信息

Nature. 2025 Jul 2. doi: 10.1038/s41586-025-09142-4.

Abstract

Understanding how animals and humans learn from experience to make adaptive decisions is a fundamental goal of neuroscience and psychology. Normative modelling frameworks such as Bayesian inference and reinforcement learning provide valuable insights into the principles governing adaptive behaviour. However, the simplicity of these frameworks often limits their ability to capture realistic biological behaviour, leading to cycles of handcrafted adjustments that are prone to researcher subjectivity. Here we present a novel modelling approach that leverages recurrent neural networks to discover the cognitive algorithms governing biological decision-making. We show that neural networks with just one to four units often outperform classical cognitive models and match larger neural networks in predicting the choices of individual animals and humans, across six well-studied reward-learning tasks. Critically, we can interpret the trained networks using dynamical systems concepts, enabling a unified comparison of cognitive models and revealing detailed mechanisms underlying choice behaviour. Our approach also estimates the dimensionality of behaviour and offers insights into algorithms learned by meta-reinforcement learning artificial intelligence agents. Overall, we present a systematic approach for discovering interpretable cognitive strategies in decision-making, offering insights into neural mechanisms and a foundation for studying healthy and dysfunctional cognition.

摘要

理解动物和人类如何从经验中学习以做出适应性决策是神经科学和心理学的一个基本目标。贝叶斯推理和强化学习等规范建模框架为理解适应性行为的原理提供了有价值的见解。然而,这些框架的简单性常常限制了它们捕捉现实生物行为的能力,导致了容易受到研究者主观性影响的手工调整循环。在此,我们提出一种新颖的建模方法,该方法利用循环神经网络来发现支配生物决策的认知算法。我们表明,仅有一到四个单元的神经网络在预测个体动物和人类的选择时,往往优于经典认知模型,并且在六个经过充分研究的奖励学习任务中与更大的神经网络相匹配。至关重要的是,我们可以使用动态系统概念来解释经过训练的网络,从而能够对认知模型进行统一比较,并揭示选择行为背后的详细机制。我们的方法还估计了行为的维度,并为元强化学习人工智能代理所学习的算法提供了见解。总体而言,我们提出了一种在决策中发现可解释认知策略的系统方法,为神经机制提供了见解,并为研究健康和功能失调的认知奠定了基础。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验