Lemeille Sylvain, Latifi Amel, Geiselmann Johannes
Laboratoire Adaptation et Pathogénie des Micro-Organismes, CNRS UMR5163 Université Joseph Fourier Bâtiment Jean Roget, Faculté Médecine-Pharmacie, Domaine de la Merci 38700 La Tronche, France.
Nucleic Acids Res. 2005 Jun 8;33(10):3381-9. doi: 10.1093/nar/gki654. Print 2005.
A major task of contemporary biology is to understand and predict the functioning of regulatory networks. We use expression data to deduce the regulation network connecting the sigma factors of Synechocystis PCC6803, the most global regulators in bacteria. Synechocystis contains one group 1 (SigA) and four group 2 (SigB, SigC, SigD and SigE) sigma factors. From the relative abundance of the sig mRNA measured in the wild-type and the four group 2 sigma mutants, we derive a network of the influences of each sigma factor on the transcription of all other sigma factors. Internal or external stimuli acting on only one of the sigma factors will thus indirectly modify the expression of most of the others. From this model, we predict the control points through which the circadian time modulates the expression of the sigma factors. Our results show that the cross regulation between the group 1 and group 2 sigma factors is very important for the adaptation of the bacterium to different environmental and physiological conditions.
当代生物学的一项主要任务是理解和预测调控网络的功能。我们利用表达数据来推导连接蓝藻PCC6803的σ因子的调控网络,σ因子是细菌中最具全局性的调控因子。蓝藻含有一个1组(SigA)和四个2组(SigB、SigC、SigD和SigE)σ因子。根据在野生型和四个2组σ因子突变体中测得的sig mRNA的相对丰度,我们得出了每个σ因子对所有其他σ因子转录影响的网络。因此,仅作用于其中一个σ因子的内部或外部刺激将间接改变大多数其他σ因子的表达。基于此模型,我们预测了昼夜节律时间调节σ因子表达的控制点。我们的结果表明,1组和2组σ因子之间的交叉调控对于细菌适应不同的环境和生理条件非常重要。