Sahai Nita, Anseau Michel
Department of Geology and Geophysics, 1215 West Dayton Street, University of Wisconsin, Madison, WI 53706, USA.
Biomaterials. 2005 Oct;26(29):5763-70. doi: 10.1016/j.biomaterials.2005.02.037. Epub 2005 Apr 15.
Hydroxyapatite (Ca5(PO4)3(OH)) forms on pseudowollastonite (psW) (alpha-CaSiO3) in vitro in simulated body fluid, human parotid saliva and cell-culture medium, and in vivo in implanted rat tibias. We used crystallographic constraints with ab initio molecular orbital calculations to identify the active site and reaction mechanism for heterogeneous nucleation of the earliest calcium phosphate oligomer/phase. The active site is the planar, cyclic, silicate trimer (Si3O9) on the (001) face of psW. The trimer has three silanol groups (>SiOH) arranged at 60 degrees from each other, providing a stereochemical match for O atoms bonded to Ca2+ on the (001) face of hydroxyapatite. Calcium phosphate nucleation is modeled in steps as hydrolysis of surface Ca-O bonds with leaching of Ca2+ into solution, protonation of the surface Si-O groups to form silanols, calcium sorption as an inner-sphere surface complex and, attachment of HPO4(2-). Our model explains the experimental solution and high resolution transmission electron microscopy data for epitaxial hydroxyapatite growth on psW in vitro and in vivo. We propose that the cyclic silicate trimer is the universal active site for heterogeneous, stereochemically promoted nucleation on silicate-based bioactive ceramics. A critical active site-density and a point of zero charge of the bioceramic less than physiological pH are required for bioactivity.
在模拟体液、人腮腺唾液和细胞培养基中,以及在植入大鼠胫骨的体内实验中,羟基磷灰石(Ca5(PO4)3(OH))可在假硅灰石(psW,α-CaSiO3)上体外形成。我们使用晶体学限制条件结合从头算分子轨道计算,来确定最早的磷酸钙低聚物/相异质成核的活性位点和反应机制。活性位点是psW(001)面上的平面环状硅酸盐三聚体(Si3O9)。该三聚体有三个彼此呈60度排列的硅醇基(>SiOH),与羟基磷灰石(001)面上与Ca2+键合的O原子形成立体化学匹配。磷酸钙成核过程按步骤建模为:表面Ca-O键水解,Ca2+浸出到溶液中;表面Si-O基团质子化形成硅醇;Ca2+作为内球表面络合物吸附;以及HPO4(2-)附着。我们的模型解释了体外和体内psW上外延生长羟基磷灰石的实验溶液和高分辨率透射电子显微镜数据。我们提出,环状硅酸盐三聚体是基于硅酸盐的生物活性陶瓷上异质、立体化学促进成核的通用活性位点。生物活性需要生物陶瓷具有临界活性位点密度和低于生理pH的零电荷点。