Suppr超能文献

通过木糖发酵酿酒酵母菌株对混合糖利用进行进化工程改造。

Evolutionary engineering of mixed-sugar utilization by a xylose-fermenting Saccharomyces cerevisiae strain.

作者信息

Kuyper Marko, Toirkens Maurice J, Diderich Jasper A, Winkler Aaron A, van Dijken Johannes P, Pronk Jack T

机构信息

Department of Biotechnology, Delft University of Technology, Julianalaan 67, 2628 BC Delft, The Netherlands.

出版信息

FEMS Yeast Res. 2005 Jul;5(10):925-34. doi: 10.1016/j.femsyr.2005.04.004.

Abstract

We have recently reported about a Saccharomyces cerevisiae strain that, in addition to the Piromyces XylA xylose isomerase gene, overexpresses the native genes for the conversion of xylulose to glycolytic intermediates. This engineered strain (RWB 217) exhibited unprecedentedly high specific growth rates and ethanol production rates under anaerobic conditions with xylose as the sole carbon source. However, when RWB 217 was grown on glucose-xylose mixtures, a diauxic growth pattern was observed with a relatively slow consumption of xylose in the second growth phase. After prolonged cultivation in an anaerobic, xylose-limited chemostat, a culture with improved xylose uptake kinetics was obtained. This culture also exhibited improved xylose consumption in glucose-xylose mixtures. A further improvement in mixed-sugar utilization was obtained by prolonged anaerobic cultivation in automated sequencing-batch reactors on glucose-xylose mixtures. A final single-strain isolate (RWB 218) rapidly consumed glucose-xylose mixtures anaerobically, in synthetic medium, with a specific rate of xylose consumption exceeding 0.9 gg(-1)h(-1). When the kinetics of zero trans-influx of glucose and xylose of RWB 218 were compared to that of the initial strain, a twofold higher capacity (V(max)) as well as an improved K(m) for xylose was apparent in the selected strain. It is concluded that the kinetics of xylose fermentation are no longer a bottleneck in the industrial production of bioethanol with yeast.

摘要

我们最近报道了一种酿酒酵母菌株,该菌株除了含有梨形毛霉XylA木糖异构酶基因外,还过表达了将木酮糖转化为糖酵解中间产物的天然基因。在以木糖为唯一碳源的厌氧条件下,这种工程菌株(RWB 217)展现出了前所未有的高比生长速率和乙醇产率。然而,当RWB 217在葡萄糖-木糖混合物上生长时,观察到了双相生长模式,在第二个生长阶段木糖的消耗相对较慢。在厌氧、木糖受限的恒化器中长时间培养后,获得了一种木糖摄取动力学得到改善的培养物。这种培养物在葡萄糖-木糖混合物中也表现出更好的木糖消耗情况。通过在自动测序间歇反应器中对葡萄糖-木糖混合物进行长时间厌氧培养,混合糖利用得到了进一步改善。最终的单菌株分离物(RWB 218)在合成培养基中能快速厌氧消耗葡萄糖-木糖混合物,木糖的比消耗速率超过0.9 gg(-1)h(-1)。当将RWB 218的葡萄糖和木糖零转运流入动力学与初始菌株的进行比较时,所选菌株中木糖的容量(V(max))提高了两倍,K(m)也得到了改善。可以得出结论,木糖发酵动力学不再是酵母工业生产生物乙醇的瓶颈。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验