Advanced Biofuels and Bioproducts Unit, CIEMAT, Avda. Complutense 40, 28040, Madrid, Spain.
Biotechnological Processes Unit, IMDEA Energy Institute, Avda. Ramón de la Sagra 3, 28935, Móstoles, Madrid, Spain.
Sci Rep. 2022 Jan 11;12(1):557. doi: 10.1038/s41598-021-04554-4.
Increasing yeast robustness against lignocellulosic-derived inhibitors and insoluble solids in bioethanol production is essential for the transition to a bio-based economy. This work evaluates the effect exerted by insoluble solids on yeast tolerance to inhibitory compounds, which is crucial in high gravity processes. Adaptive laboratory evolution (ALE) was applied on a xylose-fermenting Saccharomyces cerevisiae strain to simultaneously increase the tolerance to lignocellulosic inhibitors and insoluble solids. The evolved strain gave rise to a fivefold increase in bioethanol yield in fermentation experiments with high concentration of inhibitors and 10% (w/v) of water insoluble solids. This strain also produced 5% (P > 0.01) more ethanol than the parental in simultaneous saccharification and fermentation of steam-exploded wheat straw, mainly due to an increased xylose consumption. In response to the stress conditions (solids and inhibitors) imposed in ALE, cells induced the expression of genes related to cell wall integrity (SRL1, CWP2, WSC2 and WSC4) and general stress response (e.g., CDC5, DUN1, CTT1, GRE1), simultaneously repressing genes related to protein synthesis and iron transport and homeostasis (e.g., FTR1, ARN1, FRE1), ultimately leading to the improved phenotype. These results contribute towards understanding molecular mechanisms that cells might use to convert lignocellulosic substrates effectively.
在生物乙醇生产中,提高酵母对木质纤维素衍生抑制剂和不溶性固体的耐受性对于向生物基经济的转变至关重要。本工作评估了不溶性固体对酵母耐受抑制化合物的影响,这在高重力过程中至关重要。适应性实验室进化(ALE)被应用于木糖发酵酿酒酵母菌株,以同时提高对木质纤维素抑制剂和不溶性固体的耐受性。在发酵实验中,经过进化的菌株在含有高浓度抑制剂和 10%(w/v)水不溶性固体的情况下,使生物乙醇产量增加了五倍。与亲本菌株相比,该菌株在蒸汽爆破小麦秸秆的同步糖化和发酵中也产生了 5%(P > 0.01)更多的乙醇,这主要是由于木糖消耗增加所致。为了应对 ALE 中施加的(固体和抑制剂)应激条件,细胞诱导了与细胞壁完整性相关的基因(SRL1、CWP2、WSC2 和 WSC4)和一般应激反应(例如,CDC5、DUN1、CTT1、GRE1)的表达,同时抑制了与蛋白质合成和铁运输和平衡相关的基因(例如,FTR1、ARN1、FRE1),最终导致表型改善。这些结果有助于理解细胞可能用于有效转化木质纤维素底物的分子机制。