Suppr超能文献

用于青光眼诊断的视神经乳头自动分割

Automated segmentation of the optic nerve head for diagnosis of glaucoma.

作者信息

Chrástek R, Wolf M, Donath K, Niemann H, Paulus D, Hothorn T, Lausen B, Lämmer R, Mardin C Y, Michelson G

机构信息

Pattern Recognition, Friedrich-Alexander-University, Martensstrasse 3, 91058 Erlangen, Germany.

出版信息

Med Image Anal. 2005 Aug;9(4):297-314. doi: 10.1016/j.media.2004.12.004. Epub 2005 Apr 8.

Abstract

Glaucoma is the second most common cause of blindness worldwide. Low awareness and high costs connected to glaucoma are reasons to improve methods of screening and therapy. A well-established method for diagnosis of glaucoma is the examination of the optic nerve head using scanning-laser-tomography. This system acquires and analyzes the surface topography of the optic nerve head. The analysis that leads to a diagnosis of the disease depends on prior manual outlining of the optic nerve head by an experienced ophthalmologist. Our contribution presents a method for optic nerve head segmentation and its validation. The method is based on morphological operations, Hough transform, and an anchored active contour model. The results were validated by comparing the performance of different classifiers on data from a case-control study with contours of the optic nerve head manually outlined by an experienced ophthalmologist. We achieved the following results with respect to glaucoma diagnosis: linear discriminant analysis with 27.7% estimated error rate for automated segmentation (aut) and 26.8% estimated error rate for manual segmentation (man), classification trees with 25.2% (aut) and 22.0% (man) and bootstrap aggregation with 22.2% (aut) and 13.4% (man). It could thus be shown that our approach is suitable for automated diagnosis and screening of glaucoma.

摘要

青光眼是全球第二大致盲原因。青光眼相关的低知晓率和高成本是改进筛查和治疗方法的原因。一种成熟的青光眼诊断方法是使用扫描激光断层扫描对视神经乳头进行检查。该系统获取并分析视神经乳头的表面地形。导致疾病诊断的分析取决于经验丰富的眼科医生事先对视神经乳头进行的手动勾勒。我们的贡献提出了一种视神经乳头分割方法及其验证。该方法基于形态学操作、霍夫变换和锚定主动轮廓模型。通过比较不同分类器在病例对照研究数据上的性能与经验丰富的眼科医生手动勾勒的视神经乳头轮廓,对结果进行了验证。在青光眼诊断方面,我们取得了以下结果:线性判别分析,自动分割(aut)的估计错误率为27.7%,手动分割(man)的估计错误率为26.8%;分类树,自动分割(aut)为25.2%,手动分割(man)为22.0%;自助聚合,自动分割(aut)为22.2%,手动分割(man)为13.4%。因此可以表明,我们的方法适用于青光眼的自动诊断和筛查。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验