Zhang Yi, Wolf-Yadlin Alejandro, Ross Phillip L, Pappin Darryl J, Rush John, Lauffenburger Douglas A, White Forest M
Biological Engineering Division, Massachusetts Institute of Technnology, Cambridge, Massachusetts 02139, USA.
Mol Cell Proteomics. 2005 Sep;4(9):1240-50. doi: 10.1074/mcp.M500089-MCP200. Epub 2005 Jun 11.
Ligand binding to cell surface receptors initiates a cascade of signaling events regulated by dynamic phosphorylation events on a multitude of pathway proteins. Quantitative features, including intensity, timing, and duration of phosphorylation of particular residues, may play a role in determining cellular response, but experimental data required for analysis of these features have not previously been available. To understand the dynamic operation of signaling cascades, we have developed a method enabling the simultaneous quantification of tyrosine phosphorylation of specific residues on dozens of key proteins in a time-resolved manner, downstream of epidermal growth factor receptor (EGFR) activation. Tryptic peptides from four different EGFR stimulation time points were labeled with four isoforms of the iTRAQ reagent to enable downstream quantification. After mixing of the labeled samples, tyrosine-phosphorylated peptides were immunoprecipitated with an anti-phosphotyrosine antibody and further enriched by IMAC before LC/MS/MS analysis. Database searching and manual confirmation of peptide phosphorylation site assignments led to the identification of 78 tyrosine phosphorylation sites on 58 proteins from a single analysis. Replicate analyses of a separate biological sample provided both validation of this first data set and identification of 26 additional tyrosine phosphorylation sites and 18 additional proteins. iTRAQ fragment ion ratios provided time course phosphorylation profiles for each site. The data set of quantitative temporal phosphorylation profiles was further characterized by self-organizing maps, which resulted in identification of several cohorts of tyrosine residues exhibiting self-similar temporal phosphorylation profiles, operationally defining dynamic modules in the EGFR signaling network consistent with particular cellular processes. The presence of novel proteins and associated tyrosine phosphorylation sites within these modules indicates additional components of this network and potentially localizes the topological action of these proteins. Additional analysis and modeling of the data generated in this study are likely to yield more sophisticated models of receptor tyrosine kinase-initiated signal transduction, trafficking, and regulation.
配体与细胞表面受体的结合引发了一系列信号事件,这些事件由众多信号通路蛋白上的动态磷酸化事件调控。定量特征,包括特定残基磷酸化的强度、时间和持续时间,可能在决定细胞反应中发挥作用,但此前尚未获得分析这些特征所需的实验数据。为了理解信号级联的动态运作,我们开发了一种方法,能够在表皮生长因子受体(EGFR)激活后,以时间分辨的方式同时定量数十种关键蛋白上特定残基的酪氨酸磷酸化。来自四个不同EGFR刺激时间点的胰蛋白酶肽段用iTRAQ试剂的四种异构体进行标记,以便进行下游定量。将标记后的样品混合后,用抗磷酸酪氨酸抗体免疫沉淀酪氨酸磷酸化肽段,并在进行液相色谱/串联质谱分析之前通过固定化金属离子亲和色谱进一步富集。通过数据库搜索和对肽段磷酸化位点分配的手动确认,单次分析就鉴定出了58种蛋白上的78个酪氨酸磷酸化位点。对另一个生物样品的重复分析既验证了第一个数据集,又鉴定出了另外26个酪氨酸磷酸化位点和18种额外的蛋白。iTRAQ碎片离子比率为每个位点提供了时间进程磷酸化图谱。通过自组织映射对定量时间磷酸化图谱数据集进行了进一步表征,从而鉴定出了几组酪氨酸残基,它们表现出自相似的时间磷酸化图谱,在操作上定义了EGFR信号网络中与特定细胞过程一致的动态模块。这些模块中存在新的蛋白和相关的酪氨酸磷酸化位点,表明了该网络的其他组成部分,并可能定位了这些蛋白的拓扑作用。对本研究中生成的数据进行的额外分析和建模可能会产生更复杂的受体酪氨酸激酶引发的信号转导、运输和调控模型。