Suppr超能文献

EGFR 信号网络中 C 末端酪氨酸功能的预测性数据驱动建模。

Predictive data-driven modeling of C-terminal tyrosine function in the EGFR signaling network.

机构信息

Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.

Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA.

出版信息

Life Sci Alliance. 2023 May 11;6(8). doi: 10.26508/lsa.202201466. Print 2023 Aug.

Abstract

The epidermal growth factor receptor (EGFR) has been studied extensively because of its critical role in cellular signaling and association with disease. Previous models have elucidated interactions between EGFR and downstream adaptor proteins or showed phenotypes affected by EGFR. However, the link between specific EGFR phosphorylation sites and phenotypic outcomes is still poorly understood. Here, we employed a suite of isogenic cell lines expressing site-specific mutations at each of the EGFR C-terminal phosphorylation sites to interrogate their role in the signaling network and cell biological response to stimulation. Our results demonstrate the resilience of the EGFR network, which was largely similar even in the context of multiple Y-to-F mutations in the EGFR C-terminal tail, while also revealing nodes in the network that have not previously been linked to EGFR signaling. Our data-driven model highlights the signaling network nodes associated with distinct EGF-driven cell responses, including migration, proliferation, and receptor trafficking. Application of this same approach to less-studied RTKs should provide a plethora of novel associations that should lead to an improved understanding of these signaling networks.

摘要

表皮生长因子受体 (EGFR) 因其在细胞信号转导中的关键作用及其与疾病的关联而受到广泛研究。先前的模型已经阐明了 EGFR 与下游衔接蛋白之间的相互作用,或显示出受 EGFR 影响的表型。然而,特定 EGFR 磷酸化位点与表型结果之间的联系仍然知之甚少。在这里,我们使用了一组表达 EGFR C 末端磷酸化位点特异性突变的同基因细胞系,以探究它们在信号网络和细胞对刺激的生物学反应中的作用。我们的结果表明,EGFR 网络具有很强的适应性,即使在 EGFR C 末端尾部的多个 Y 到 F 突变的情况下,网络也非常相似,同时还揭示了以前与 EGFR 信号没有联系的网络节点。我们的数据驱动模型突出了与不同 EGF 驱动的细胞反应相关的信号网络节点,包括迁移、增殖和受体运输。将这种相同的方法应用于研究较少的 RTKs 应该会提供大量新的关联,这应该有助于更好地理解这些信号网络。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a4dc/10176108/dba1acf8f09c/LSA-2022-01466_Fig1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验