Pan Baohan, Fromholt Susan E, Hess Ellen J, Crawford Thomas O, Griffin John W, Sheikh Kazim A, Schnaar Ronald L
Department of Pharmacology and Molecular Sciences, The Johns Hopkins School of Medicine, Baltimore, MD 21205, USA.
Exp Neurol. 2005 Sep;195(1):208-17. doi: 10.1016/j.expneurol.2005.04.017.
Complementary interacting molecules on myelin and axons are required for long-term axon-myelin stability. Their disruption results in axon degeneration, contributing to the pathogenesis of demyelinating diseases. Myelin-associated glycoprotein (MAG), a minor constituent of central and peripheral nervous system myelin, is a member of the Siglec family of sialic acid-binding lectins and binds to gangliosides GD1a and GT1b, prominent molecules on the axon surface. Mice lacking the ganglioside biosynthetic gene Galgt1 fail to express complex gangliosides, including GD1a and GT1b. In the current studies, CNS and PNS histopathology and behavior of Mag-null, Galgt1-null, and double-null mice were compared on the same mouse strain background. When back-crossed to >99% C57BL/6 strain purity, Mag-null mice demonstrated marked CNS, as well as PNS, axon degeneration, in contrast to prior findings using mice of mixed strain background. On the same background, Mag- and Galgt1-null mice exhibited quantitatively and qualitatively similar CNS and PNS axon degeneration and nearly identical decreases in axon diameter and neurofilament spacing. Double-null mice had qualitatively similar changes. Consistent with these findings, Mag- and Galgt1-null mice had similar motor behavioral deficits, with double-null mice only modestly more impaired. Despite their motor deficits, Mag- and Galgt1-null mice demonstrated hyperactivity, with spontaneous locomotor activity significantly above that of wild type mice. These data demonstrate that MAG and complex gangliosides contribute to axon stability in both the CNS and PNS. Similar neuropathological and behavioral deficits in Galgt1-, Mag-, and double-null mice support the hypothesis that MAG binding to gangliosides contributes to long-term axon-myelin stability.
髓鞘和轴突上的互补性相互作用分子对于轴突 - 髓鞘的长期稳定性是必需的。它们的破坏会导致轴突变性,这是脱髓鞘疾病发病机制的一个因素。髓鞘相关糖蛋白(MAG)是中枢和外周神经系统髓鞘的一种次要成分,是唾液酸结合凝集素Siglec家族的成员,可与神经节苷脂GD1a和GT1b结合,这两种是轴突表面的重要分子。缺乏神经节苷脂生物合成基因Galgt1的小鼠无法表达包括GD1a和GT1b在内的复杂神经节苷脂。在当前研究中,在相同的小鼠品系背景下比较了Mag基因敲除、Galgt1基因敲除和双基因敲除小鼠的中枢神经系统和外周神经系统组织病理学及行为表现。当回交到C57BL/6品系纯度>99%时,与之前使用混合品系背景小鼠的研究结果相反,Mag基因敲除小鼠表现出明显的中枢神经系统以及外周神经系统轴突变性。在相同背景下,Mag基因敲除和Galgt1基因敲除小鼠在中枢神经系统和外周神经系统轴突变性的数量和质量上相似,轴突直径和神经丝间距的减小也几乎相同。双基因敲除小鼠有质量上相似的变化。与这些发现一致,Mag基因敲除和Galgt1基因敲除小鼠有相似的运动行为缺陷,双基因敲除小鼠的受损程度仅略高。尽管有运动缺陷,Mag基因敲除和Galgt1基因敲除小鼠表现出多动,其自发运动活性显著高于野生型小鼠。这些数据表明MAG和复杂神经节苷脂对中枢神经系统和外周神经系统的轴突稳定性都有贡献。Galgt1基因敲除、Mag基因敲除和双基因敲除小鼠中相似的神经病理学和行为缺陷支持了MAG与神经节苷脂结合有助于轴突 - 髓鞘长期稳定性的假说。