Suppr超能文献

视觉诱发电位在功能磁共振成像扫描期间得以恢复。

Visual evoked potentials recovered from fMRI scan periods.

作者信息

Becker Robert, Ritter Petra, Moosmann Matthias, Villringer Arno

机构信息

Berlin NeuroImaging Center, Charité-Universitätsmedizin Berlin, Berlin, Germany.

出版信息

Hum Brain Mapp. 2005 Nov;26(3):221-30. doi: 10.1002/hbm.20152.

Abstract

Simultaneous electroencephalography (EEG) and functional magnetic resonance imaging (fMRI) may allow functional imaging of the brain at high temporal and spatial resolution. Artifacts generated in the EEG signal during MR acquisition, however, continue to pose a major challenge. Due to these artifacts, an interleaved modus has often been used for "evoked potential" experiments, i.e., only EEG signals recorded between MRI scan periods were assessed. An obvious disadvantage of this approach is the loss of a portion of the EEG information, which might be relevant for the specific scientific issue. In this study, continuous, simultaneous EEG-fMRI measurements were carried out. Visual evoked potentials (VEPs) could be reconstructed reliably from periods during MR scanning and in between successive scans. No significant differences between both VEPs were detected. This indicates sufficient artifact removal as well as physiological correspondence of VEPs in both periods. Simultaneous continuous VEP-fMRI recordings are thus shown to be feasible.

摘要

同步脑电图(EEG)和功能磁共振成像(fMRI)或许能够以高时间和空间分辨率对大脑进行功能成像。然而,在磁共振成像采集过程中,脑电图信号中产生的伪迹仍然构成了一项重大挑战。由于这些伪迹,“诱发电位”实验常采用交错模式,即仅评估在磁共振成像扫描时段之间记录的脑电图信号。这种方法的一个明显缺点是会丢失一部分脑电图信息,而这些信息可能与特定的科学问题相关。在本研究中,进行了连续、同步的脑电图 - 功能磁共振成像测量。视觉诱发电位(VEP)能够从磁共振扫描期间以及连续扫描之间的时段可靠地重建。未检测到两种视觉诱发电位之间存在显著差异。这表明在两个时段中,伪迹得到了充分去除,并且视觉诱发电位在生理上具有一致性。因此,同步连续视觉诱发电位 - 功能磁共振成像记录被证明是可行的。

相似文献

1
Visual evoked potentials recovered from fMRI scan periods.
Hum Brain Mapp. 2005 Nov;26(3):221-30. doi: 10.1002/hbm.20152.
2
Real-time artifact filtering in continuous VEPs/fMRI recording.
J Neurosci Methods. 2009 Nov 15;184(2):213-23. doi: 10.1016/j.jneumeth.2009.08.003. Epub 2009 Aug 12.
4
Simultaneous EEG-fMRI at ultra-high field: artifact prevention and safety assessment.
Neuroimage. 2015 Jan 15;105:132-44. doi: 10.1016/j.neuroimage.2014.10.055. Epub 2014 Oct 29.
5
Reference layer adaptive filtering (RLAF) for EEG artifact reduction in simultaneous EEG-fMRI.
J Neural Eng. 2017 Apr;14(2):026003. doi: 10.1088/1741-2552/14/2/026003. Epub 2017 Feb 3.
6
Ultrahigh-frequency EEG during fMRI: pushing the limits of imaging-artifact correction.
Neuroimage. 2009 Oct 15;48(1):94-108. doi: 10.1016/j.neuroimage.2009.06.022. Epub 2009 Jun 16.
8
Visual evoked potential (VEP) measured by simultaneous 64-channel EEG and 3T fMRI.
Neuroreport. 1999 Jun 23;10(9):1893-7. doi: 10.1097/00001756-199906230-00018.
9
Online Reduction of Artifacts in EEG of Simultaneous EEG-fMRI Using Reference Layer Adaptive Filtering (RLAF).
Brain Topogr. 2018 Jan;31(1):129-149. doi: 10.1007/s10548-017-0606-7. Epub 2017 Nov 9.
10
Correspondence of visual evoked potentials with FMRI signals in human visual cortex.
Brain Topogr. 2008 Dec;21(2):86-92. doi: 10.1007/s10548-008-0069-y. Epub 2008 Oct 9.

引用本文的文献

1
Multimodal neuroimaging of fatigability development.
Imaging Neurosci (Camb). 2025 Sep 2;3. doi: 10.1162/IMAG.a.132. eCollection 2025.
4
When Is Simultaneous Recording Necessary? A Guide for Researchers Considering Combined EEG-fMRI.
Front Neurosci. 2021 Jun 29;15:636424. doi: 10.3389/fnins.2021.636424. eCollection 2021.
5
Enhancement of the Comb Filtering Selectivity Using Iterative Moving Average for Periodic Waveform and Harmonic Elimination.
J Healthc Eng. 2018 Feb 1;2018:7901502. doi: 10.1155/2018/7901502. eCollection 2018.
6
Removing Cardiac Artefacts in Magnetoencephalography with Resampled Moving Average Subtraction.
Brain Topogr. 2016 Nov;29(6):783-790. doi: 10.1007/s10548-016-0513-3. Epub 2016 Aug 8.
8
State-dependencies of learning across brain scales.
Front Comput Neurosci. 2015 Feb 26;9:1. doi: 10.3389/fncom.2015.00001. eCollection 2015.
9
Investigating the effect of modifying the EEG cap lead configuration on the gradient artifact in simultaneous EEG-fMRI.
Front Neurosci. 2014 Jul 29;8:226. doi: 10.3389/fnins.2014.00226. eCollection 2014.

本文引用的文献

1
Ballistocardiogram artifact reduction in the simultaneous acquisition of auditory ERPS and fMRI.
Neuroimage. 2004 Aug;22(4):1534-42. doi: 10.1016/j.neuroimage.2004.03.033.
2
Improved ballistocardiac artifact removal from the electroencephalogram recorded in fMRI.
J Neurosci Methods. 2004 May 30;135(1-2):193-203. doi: 10.1016/j.jneumeth.2003.12.016.
3
Correlates of alpha rhythm in functional magnetic resonance imaging and near infrared spectroscopy.
Neuroimage. 2003 Sep;20(1):145-58. doi: 10.1016/s1053-8119(03)00344-6.
4
EEG-correlated fMRI of human alpha activity.
Neuroimage. 2003 Aug;19(4):1463-76. doi: 10.1016/s1053-8119(03)00286-6.
6
Combined measurement of event-related potentials (ERPs) and fMRI.
Acta Neurobiol Exp (Wars). 2003;63(1):49-53. doi: 10.55782/ane-2003-1454.
9
Simultaneous EEG and fMRI of the alpha rhythm.
Neuroreport. 2002 Dec 20;13(18):2487-92. doi: 10.1097/01.wnr.0000047685.08940.d0.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验