Suppr超能文献

被动聆听来自不同位置声音时的人脑激活:一项功能磁共振成像和脑磁图研究。

Human brain activation during passive listening to sounds from different locations: an fMRI and MEG study.

作者信息

Brunetti M, Belardinelli P, Caulo M, Del Gratta C, Della Penna S, Ferretti A, Lucci G, Moretti A, Pizzella V, Tartaro A, Torquati K, Olivetti Belardinelli M, Romani G L

机构信息

Institute of Advanced Biomedical Technologies, University of Chieti, Chieti, Italy.

出版信息

Hum Brain Mapp. 2005 Dec;26(4):251-61. doi: 10.1002/hbm.20164.

Abstract

Recent animal and human studies indicate the existence of a neural pathway for sound localization, which is similar to the "where" pathway of the visual system and distinct from the sound identification pathway. This study sought to highlight this pathway using a passive listening protocol. We employed fMRI to study cortical areas, activated during the processing of sounds coming from different locations, and MEG to disclose the temporal dynamics of these areas. In addition, the hypothesis of different activation levels in the right and in the left hemispheres, due to hemispheric specialization of the human brain, was investigated. The fMRI results indicate that the processing of sound, coming from different locations, activates a complex neuronal circuit, similar to the sound localization system described in monkeys known as the auditory "where" pathway. This system includes Heschl's gyrus, the superior temporal gyrus, the supramarginal gyrus, and the inferior and middle frontal lobe. The MEG analysis allowed assessment of the timing of this circuit: the activation of Heschl's gyrus was observed 139 ms after the auditory stimulus, the peak latency of the source located in the superior temporal gyrus was at 156 ms, and the inferior parietal lobule and the supramarginal gyrus peaked at 162 ms. Both hemispheres were found to be involved in the processing of sounds coming from different locations, but a stronger activation was observed in the right hemisphere.

摘要

最近的动物和人体研究表明,存在一条用于声音定位的神经通路,它类似于视觉系统的“位置”通路,且与声音识别通路不同。本研究旨在通过被动聆听方案来突出这条通路。我们使用功能磁共振成像(fMRI)来研究在处理来自不同位置的声音时被激活的皮层区域,并使用脑磁图(MEG)来揭示这些区域的时间动态。此外,还研究了由于人类大脑半球特化而导致的左右半球不同激活水平的假设。功能磁共振成像结果表明,处理来自不同位置的声音会激活一个复杂的神经元回路,类似于猴子中描述的声音定位系统,即听觉“位置”通路。该系统包括颞横回、颞上回、缘上回以及额下叶和额中叶。脑磁图分析能够评估这个回路的时间:在听觉刺激后139毫秒观察到颞横回的激活,位于颞上回的源的峰值潜伏期为156毫秒,顶下小叶和缘上回的峰值出现在162毫秒。发现两个半球都参与了处理来自不同位置的声音,但在右半球观察到更强的激活。

相似文献

2
Neuromagnetic recordings reveal the temporal dynamics of auditory spatial processing in the human cortex.
Neurosci Lett. 2006 Mar 20;396(1):17-22. doi: 10.1016/j.neulet.2005.11.018. Epub 2005 Dec 15.
3
Stimulus-dependent activations and attention-related modulations in the auditory cortex: a meta-analysis of fMRI studies.
Hear Res. 2014 Jan;307:29-41. doi: 10.1016/j.heares.2013.08.001. Epub 2013 Aug 11.
5
Keeping track of sound objects in space: The contribution of early-stage auditory areas.
Hear Res. 2018 Sep;366:17-31. doi: 10.1016/j.heares.2018.03.027. Epub 2018 Apr 1.
6
Temporal characteristics of audiovisual information processing.
J Neurosci. 2008 May 14;28(20):5344-9. doi: 10.1523/JNEUROSCI.5039-07.2008.
7
Temporal stream of cortical representation for auditory spatial localization in human hemispheres.
Neurosci Lett. 2000 Oct 13;292(3):215-9. doi: 10.1016/s0304-3940(00)01465-8.
8
Processing of auditory spatial cues in human cortex: an fMRI study.
Neuropsychologia. 2006;44(3):454-61. doi: 10.1016/j.neuropsychologia.2005.05.021. Epub 2005 Jul 20.
10
The contribution of the inferior parietal lobe to auditory spatial working memory.
J Cogn Neurosci. 2008 Feb;20(2):285-95. doi: 10.1162/jocn.2008.20014.

引用本文的文献

1
Direct current galvanic vestibular stimulation modulates sound localization abilities.
Sci Rep. 2025 Mar 1;15(1):7351. doi: 10.1038/s41598-025-92064-y.
4
Dual Representation of the Auditory Space.
Brain Sci. 2024 May 24;14(6):535. doi: 10.3390/brainsci14060535.
5
Many but not all deep neural network audio models capture brain responses and exhibit correspondence between model stages and brain regions.
PLoS Biol. 2023 Dec 13;21(12):e3002366. doi: 10.1371/journal.pbio.3002366. eCollection 2023 Dec.
7
Activities of the Right Temporo-Parieto-Occipital Junction Reflect Spatial Hearing Ability in Cochlear Implant Users.
Front Neurosci. 2021 Mar 12;15:613101. doi: 10.3389/fnins.2021.613101. eCollection 2021.
8
Auditory localization should be considered as a sign of minimally conscious state based on multimodal findings.
Brain Commun. 2020 Dec 12;2(2):fcaa195. doi: 10.1093/braincomms/fcaa195. eCollection 2020.
9
Cortical auditory distance representation based on direct-to-reverberant energy ratio.
Neuroimage. 2020 Mar;208:116436. doi: 10.1016/j.neuroimage.2019.116436. Epub 2019 Dec 3.
10
Cortical mechanisms of spatial hearing.
Nat Rev Neurosci. 2019 Oct;20(10):609-623. doi: 10.1038/s41583-019-0206-5. Epub 2019 Aug 29.

本文引用的文献

1
Assessing the auditory dual-pathway model in humans.
Neuroimage. 2004 May;22(1):401-8. doi: 10.1016/j.neuroimage.2004.01.014.
3
Preserved use of spatial cues for sound segregation in a case of spatial deafness.
Neuropsychologia. 2003;41(9):1254-61. doi: 10.1016/s0028-3932(03)00014-9.
4
Where is 'where' in the human auditory cortex?
Nat Neurosci. 2002 Sep;5(9):905-9. doi: 10.1038/nn904.
5
Cortical processing of speech sounds and their analogues in a spatial auditory environment.
Brain Res Cogn Brain Res. 2002 Aug;14(2):294-9. doi: 10.1016/s0926-6410(02)00132-5.
6
Structure and function of auditory cortex: music and speech.
Trends Cogn Sci. 2002 Jan 1;6(1):37-46. doi: 10.1016/s1364-6613(00)01816-7.
7
Location changes enhance hemispheric asymmetry of magnetic fields evoked by lateralized sounds in humans.
Neurosci Lett. 2001 Nov 13;314(1-2):17-20. doi: 10.1016/s0304-3940(01)02248-0.
8
"What" and "where" in the human auditory system.
Proc Natl Acad Sci U S A. 2001 Oct 9;98(21):12301-6. doi: 10.1073/pnas.211209098. Epub 2001 Sep 25.
9
Distinct pathways involved in sound recognition and localization: a human fMRI study.
Neuroimage. 2001 Oct;14(4):802-16. doi: 10.1006/nimg.2001.0888.
10
Spatial localization after excision of human auditory cortex.
J Neurosci. 2001 Aug 15;21(16):6321-8. doi: 10.1523/JNEUROSCI.21-16-06321.2001.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验