Auranen Toni, Nummenmaa Aapo, Hämäläinen Matti S, Jääskeläinen Iiro P, Lampinen Jouko, Vehtari Aki, Sams Mikko
Laboratory of Computational Engineering, Helsinki University of Technology, P.O. Box 9203, 02015 HUT, Espoo, Finland.
Neuroimage. 2005 Jul 1;26(3):870-84. doi: 10.1016/j.neuroimage.2005.02.046. Epub 2005 Apr 8.
Magnetoencephalography (MEG) allows millisecond-scale non-invasive measurement of magnetic fields generated by neural currents in the brain. However, localization of the underlying current sources is ambiguous due to the so-called inverse problem. The most widely used source localization methods (i.e., minimum-norm and minimum-current estimates (MNE and MCE) and equivalent current dipole (ECD) fitting) require ad hoc determination of the cortical current distribution (l(2)-, l(1)-norm priors and point-sized dipolar, respectively). In this article, we perform a Bayesian analysis of the MEG inverse problem with l(p)-norm priors for the current sources. This way, we circumvent the arbitrary choice between l(1)- and l(2)-norm prior, which is instead rendered automatically based on the data. By obtaining numerical samples from the joint posterior probability distribution of the source current parameters and model hyperparameters (such as the l(p)-norm order p) using Markov chain Monte Carlo (MCMC) methods, we calculated the spatial inverse estimates as expectation values of the source current parameters integrated over the hyperparameters. Real MEG data and simulated (known) source currents with realistic MRI-based cortical geometry and 306-channel MEG sensor array were used. While the proposed model is sensitive to source space discretization size and computationally rather heavy, it is mathematically straightforward, thus allowing incorporation of, for instance, a priori functional magnetic resonance imaging (fMRI) information.
脑磁图(MEG)能够对大脑中神经电流产生的磁场进行毫秒级的非侵入性测量。然而,由于所谓的逆问题,潜在电流源的定位并不明确。最广泛使用的源定位方法(即最小范数和最小电流估计(MNE和MCE)以及等效电流偶极子(ECD)拟合)需要特别确定皮质电流分布(分别为l(2)范数、l(1)范数先验以及点大小的偶极子)。在本文中,我们对具有电流源l(p)范数先验的MEG逆问题进行了贝叶斯分析。通过这种方式,我们规避了在l(1)范数和l(2)范数先验之间的任意选择,而是根据数据自动做出这种选择。通过使用马尔可夫链蒙特卡罗(MCMC)方法从源电流参数和模型超参数(如l(p)范数阶数p)的联合后验概率分布中获取数值样本,我们将空间逆估计计算为在超参数上积分的源电流参数的期望值。使用了具有基于真实MRI的皮质几何结构和306通道MEG传感器阵列的真实MEG数据以及模拟(已知)源电流。虽然所提出的模型对源空间离散化大小敏感且计算量相当大,但它在数学上很直接,因此允许纳入例如先验功能磁共振成像(fMRI)信息。