Institute of Biomedical Engineering, National Taiwan University, Taipei, Taiwan.
Neuroimage. 2010 Oct 15;53(1):146-60. doi: 10.1016/j.neuroimage.2010.05.013. Epub 2010 May 19.
Magnetoencephalography enables non-invasive detection of weak cerebral magnetic fields by utilizing super-conducting quantum interference devices (SQUIDs). Solving the MEG inverse problem requires reconstructing the locations and orientations of the underlying neuronal current sources based on the extracranial measurements. Most inverse problem solvers explicitly favor either spatially more focal or diffuse current source patterns. Naturally, in a situation where both focal and spatially extended sources are present, such reconstruction methods may yield inaccurate estimates. To address this problem, we propose a novel ComprEssive Neuromagnetic Tomography (CENT) method based on the assumption that the current sources are compressible. The compressibility is quantified by the joint sparsity of the source representation in the standard source space and in a transformed domain. The purpose of the transformation sparsity constraint is to incorporate local spatial structure adaptively by exploiting the natural redundancy of the source configurations in the transform domain. By combining these complementary constraints of standard and transformed domain sparsity we obtain source estimates, which are not only locally smooth and regular but also form globally separable clusters. In this work, we use the l(1)-norm as a measure of sparsity and convex optimization to yield compressive estimates in a computationally tractable manner. We study the Laplacian matrix (CENT(L)) and spherical wavelets (CENT(W)) as alternatives for the transformation in the compression constraint. In addition to the two prior constraints on the sources, we control the discrepancy between the modeled and measured data by restricting the power of residual error below a specified value. The results show that both CENT(L) and CENT(W) are capable of producing robust spatially regular source estimates with high computational efficiency. For simulated sources of focal, diffuse, or combined types, the CENT method shows better accuracy on estimating the source locations and spatial extents than the minimum l(1)-norm or minimum l(2)-norm constrained inverse solutions. Different transformations yield different benefits: By utilizing CENT with the Laplacian matrix it is possible to suppress physiologically atypical activations extending across two opposite banks of a deep sulcus. With the spherical wavelet transform CENT can improve the detection of two nearby yet not directly connected sources. As demonstrated by simulations, CENT is capable of reflecting the spatial extent for both focal and spatially extended current sources. The analysis of in vivo MEG data by CENT produces less physiologically inconsistent "clutter" current sources in somatosensory and auditory MEG measurements. Overall, the CENT method is demonstrated to be a promising tool for adaptive modeling of distributed neuronal currents associated with cognitive tasks.
脑磁图通过利用超导量子干涉器件(SQUIDs)实现对弱脑磁场的非侵入性检测。解决 MEG 逆问题需要根据颅外测量值重建潜在神经元电流源的位置和方向。大多数逆问题求解器明确偏向于空间上更聚焦或扩散的电流源模式。自然地,在存在焦点和空间扩展源的情况下,这种重建方法可能会产生不准确的估计。为了解决这个问题,我们提出了一种新的压缩脑磁成像(CENT)方法,该方法基于电流源可压缩的假设。通过标准源空间和变换域中源表示的联合稀疏度来量化可压缩性。变换稀疏性约束的目的是通过利用变换域中源配置的自然冗余来自适应地合并局部空间结构。通过结合标准和变换域稀疏性的这些互补约束,我们获得了不仅局部平滑且规则,而且还形成全局可分离聚类的源估计。在这项工作中,我们使用 l(1)-范数作为稀疏度的度量,并使用凸优化以在计算上可行的方式产生压缩估计。我们研究拉普拉斯矩阵(CENT(L))和球小波(CENT(W))作为压缩约束中的变换替代。除了对源的两个先验约束之外,我们还通过将残差的功率限制在特定值以下来控制模型和测量数据之间的差异。结果表明,CENT(L)和 CENT(W)都能够以高计算效率产生稳健的空间规则源估计。对于焦点、扩散或组合类型的模拟源,CENT 方法在估计源位置和空间范围方面比最小 l(1)-范数或最小 l(2)-范数约束的逆解具有更高的准确性。不同的变换带来不同的好处:通过使用拉普拉斯矩阵的 CENT,可以抑制延伸到深部脑沟两侧的非典型生理激活。使用球形小波变换的 CENT 可以改善两个附近但不直接连接的源的检测。正如模拟所示,CENT 能够反映焦点和空间扩展电流源的空间范围。CENT 对体内 MEG 数据的分析在体感和听觉 MEG 测量中产生了较少的生理不一致的“杂散”电流源。总体而言,CENT 方法被证明是一种有前途的工具,用于与认知任务相关的分布式神经元电流的自适应建模。