Barta Patrick, Miller Michael I, Qiu Anqi
Center for Imaging Science, The Johns Hopkins University, Clark Hall 301, 3400 N. Charles Street, Baltimore, MD 21218 USA.
IEEE Trans Med Imaging. 2005 Jun;24(6):728-42. doi: 10.1109/TMI.2005.846861.
The human cerebral cortex is a laminar structure about 3 mm thick, and is easily visualized with current magnetic resonance (MR) technology. The thickness of the cortex varies locally by region, and is likely to be influenced by such factors as development, disease and aging. Thus, accurate measurements of local cortical thickness are likely to be of interest to other researchers. We develop a parametric stochastic model relating the laminar structure of local regions of the cerebral cortex to MR image data. Parameters of the model include local thickness, and statistics describing white, gray and cerebrospinal fluid (CSF) image intensity values as a function of the normal distance from the center of a voxel to a local coordinate system anchored at the gray/white matter interface. Our fundamental data object, the intensity-distance histogram (IDH), is a two-dimensional (2-D) generalization of the conventional 1-D image intensity histogram, which indexes voxels not only by their intensity value, but also by their normal distance to the gray/white interface. We model the IDH empirically as a marked Poisson process with marking process a Gaussian random field model of image intensity indexed against normal distance. In this paper, we relate the parameters of the IDH model to the local geometry of the cortex. A maximum-likelihood framework estimates the parameters of the model from the data. Here, we show estimates of these parameters for 10 volumes in the posterior cingulate, and 6 volumes in the anterior and posterior banks of the central sulcus. The accuracy of the estimates is quantified via Cramer-Rao bounds. We believe that this relatively crude model can be extended in a straightforward fashion to other biologically and theoretically interesting problems such as segmentation, surface area estimation, and estimating the thickness distribution in a variety of biologically relevant contexts.
人类大脑皮层是一个厚度约为3毫米的层状结构,利用当前的磁共振(MR)技术很容易观察到。皮层厚度在局部区域因部位而异,并且可能受到发育、疾病和衰老等因素的影响。因此,其他研究人员可能会对局部皮层厚度的精确测量感兴趣。我们开发了一个参数化随机模型,将大脑皮层局部区域的层状结构与MR图像数据联系起来。该模型的参数包括局部厚度,以及描述白质、灰质和脑脊液(CSF)图像强度值的统计数据,这些数据是体素中心到锚定在灰质/白质界面的局部坐标系的法线距离的函数。我们的基本数据对象,强度-距离直方图(IDH),是传统一维图像强度直方图的二维(2-D)推广,它不仅通过体素的强度值对体素进行索引,还通过它们到灰质/白质界面的法线距离进行索引。我们将IDH经验性地建模为一个标记泊松过程,其中标记过程是一个针对法线距离索引的图像强度的高斯随机场模型。在本文中,我们将IDH模型的参数与皮层的局部几何结构联系起来。一个最大似然框架从数据中估计模型的参数。在这里,我们展示了后扣带回中10个体积以及中央沟前后壁中6个体积的这些参数的估计值。估计值的准确性通过克拉美-罗界进行量化。我们相信,这个相对简单的模型可以以一种直接的方式扩展到其他生物学和理论上有趣的问题,如分割、表面积估计以及在各种生物学相关背景下估计厚度分布。