Developmental and Functional Brain Imaging, Critical Care and Neurosciences, Murdoch Childrens Research Institute, Melbourne, Australia.
Hum Brain Mapp. 2011 Dec;32(12):2131-40. doi: 10.1002/hbm.21174. Epub 2011 Feb 8.
The corpus callosum facilitates communication between the cerebral hemispheres. Morphological abnormalities of the corpus callosum have been identified in numerous psychiatric and neurological disorders. To quantitatively analyze the thickness profile of the corpus callosum, we adapted an automatic thickness measurement method, which was originally used on magnetic resonance (MR) images of the cerebral cortex (Hutton et al. [2008]: NeuroImage 40:1701-10; Jones et al. [2002]: Hum Brain Mapp 11:12-32; Schmitt and Böhme [2002]: NeuroImage 16:1103-9; Yezzi and Prince [2003]: IEEE Trans Med Imaging 22:1332-9), to MR images of the corpus callosum. The thickness model was derived by computing a solution to Laplace's equation evaluated on callosal voxels. The streamlines from this solution form non-overlapping, cross-sectional contours the lengths of which are modeled as the callosal thickness. Apart from the semi-automated segmentation and endpoint selection procedures, the method is fully automated, robust, and reproducible. We compared the Laplace method with the orthogonal projection technique previously published (Walterfang et al. [2009a]: Psych Res Neuroimaging 173:77-82; Walterfang et al. [2008a]: Br J Psychiatry 192:429-34; Walterfang et al. [2008b]: Schizophr Res 103:1-10) on a cohort of 296 subjects, composed of 86 patients with chronic schizophrenia (CSZ), 110 individuals with first-episode psychosis, 100 individuals at ultra-high risk for psychosis (UHR; 27 of whom later developed psychosis, UHR-P, and 73 who did not, UHR-NP), and 55 control subjects (CTL). We report similar patterns of statistically significant differences in regional callosal thickness with respect to the comparisons CSZ vs. CTL, UHR vs. CTL, UHR-P vs. UHR-NP, and UHR vs. CTL.
胼胝体有助于大脑半球之间的通信。在许多精神和神经疾病中都发现了胼胝体的形态异常。为了定量分析胼胝体的厚度分布,我们采用了一种自动厚度测量方法,该方法最初用于大脑皮层的磁共振(MR)图像(Hutton 等人,[2008]:NeuroImage 40:1701-10;Jones 等人,[2002]:Hum Brain Mapp 11:12-32;Schmitt 和 Böhme,[2002]:NeuroImage 16:1103-9;Yezzi 和 Prince,[2003]:IEEE Trans Med Imaging 22:1332-9),并将其应用于胼胝体的 MR 图像。厚度模型是通过计算在胼胝体体素上评估的拉普拉斯方程的解得出的。该解的流线形成不重叠的、横截面轮廓,其长度被建模为胼胝体的厚度。除了半自动分割和端点选择过程外,该方法完全自动化、稳健且可重复。我们将拉普拉斯方法与之前发表的正交投影技术(Walterfang 等人,[2009a]:Psych Res Neuroimaging 173:77-82;Walterfang 等人,[2008a]:Br J Psychiatry 192:429-34;Walterfang 等人,[2008b]:Schizophr Res 103:1-10)进行了比较,该方法应用于由 296 名受试者组成的队列,其中包括 86 名慢性精神分裂症患者(CSZ)、110 名首发精神病患者、100 名精神病超高风险个体(UHR;其中 27 人后来发展为精神病,UHR-P,73 人没有,UHR-NP)和 55 名对照受试者(CTL)。我们报告了在区域胼胝体厚度方面与 CSZ 与 CTL、UHR 与 CTL、UHR-P 与 UHR-NP 和 UHR 与 CTL 的比较中具有统计学意义的差异的相似模式。