Suppr超能文献

辐射诱导的DNA双链断裂在纳米尺度上的复杂性作为重新连接动力学决定因素的证据。

Evidence for complexity at the nanometer scale of radiation-induced DNA DSBs as a determinant of rejoining kinetics.

作者信息

Pinto M, Prise K M, Michael B D

机构信息

Gray Cancer Institute, Mount Vernon Hospital, Northwood, HA6 2JR Middlesex, United Kingdom.

出版信息

Radiat Res. 2005 Jul;164(1):73-85. doi: 10.1667/rr3394.

Abstract

The rejoining kinetics of double-stranded DNA fragments, along with measurements of residual damage after postirradiation incubation, are often used as indicators of the biological relevance of the damage induced by ionizing radiation of different qualities. Although it is widely accepted that high-LET radiation-induced double-strand breaks (DSBs) tend to rejoin with kinetics slower than low-LET radiation-induced DSBs, possibly due to the complexity of the DSB itself, the nature of a slowly rejoining DSB-containing DNA lesion remains unknown. Using an approach that combines pulsed-field gel electrophoresis (PFGE) of fragmented DNA from human skin fibroblasts and a recently developed Monte Carlo simulation of radiation-induced DNA breakage and rejoining kinetics, we have tested the role of DSB-containing DNA lesions in the 8-kbp-5.7-Mbp fragment size range in determining the DSB rejoining kinetics. It is found that with low-LET X rays or high-LET alpha particles, DSB rejoining kinetics data obtained with PFGE can be computer-simulated assuming that DSB rejoining kinetics does not depend on spacing of breaks along the chromosomes. After analysis of DNA fragmentation profiles, the rejoining kinetics of X-ray-induced DSBs could be fitted by two components: a fast component with a half-life of 0.9+/-0.5 h and a slow component with a half-life of 16+/-9 h. For alpha particles, a fast component with a half-life of 0.7+/-0.4 h and a slow component with a half-life of 12+/-5 h along with a residual fraction of unrepaired breaks accounting for 8% of the initial damage were observed. In summary, it is shown that genomic proximity of breaks along a chromosome does not determine the rejoining kinetics, so the slowly rejoining breaks induced with higher frequencies after exposure to high-LET radiation (0.37+/-0.12) relative to low-LET radiation (0.22+/-0.07) can be explained on the basis of lesion complexity at the nanometer scale, known as locally multiply damaged sites.

摘要

双链DNA片段的重新连接动力学,以及辐照后孵育后残余损伤的测量,常被用作不同性质的电离辐射诱导损伤的生物学相关性指标。尽管人们普遍认为,高传能线密度(LET)辐射诱导的双链断裂(DSB)重新连接的动力学往往比低LET辐射诱导的DSB慢,这可能是由于DSB本身的复杂性,但含缓慢重新连接的DSB的DNA损伤的性质仍然未知。我们采用一种方法,将来自人类皮肤成纤维细胞的片段化DNA的脉冲场凝胶电泳(PFGE)与最近开发的辐射诱导DNA断裂和重新连接动力学的蒙特卡罗模拟相结合,测试了在8kbp - 5.7Mbp片段大小范围内含DSB的DNA损伤在决定DSB重新连接动力学中的作用。结果发现,对于低LET X射线或高LETα粒子,假设DSB重新连接动力学不依赖于染色体上断裂的间距,则可以通过计算机模拟PFGE获得的DSB重新连接动力学数据。在分析DNA片段化图谱后,X射线诱导的DSB的重新连接动力学可以由两个成分拟合:一个半衰期为0.9±0.5小时的快速成分和一个半衰期为16±9小时的缓慢成分。对于α粒子,则观察到一个半衰期为0.7±0.4小时的快速成分、一个半衰期为12±5小时的缓慢成分,以及占初始损伤8%的未修复断裂的残余部分。总之,研究表明染色体上断裂的基因组邻近性并不决定重新连接动力学,因此相对于低LET辐射(0.22±0.07),高LET辐射(0.37±0.12)后以更高频率诱导的缓慢重新连接的断裂可以基于纳米尺度的损伤复杂性来解释,即局部多重损伤位点。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验